South Asian Research Journal of Natural Products.

South Asian Research Journal of Natural Products

Volume 7, Issue 3, Page 339-347, 2024; Article no.SARJNP.125202

Determination of Physicochemical Parameters of Tap Water and Sachet Water in University of Uyo, Akwa Ibom State, Nigeria

Essien, E. A. ^{a*}, Essien, U. B. ^b, Akpan, L. E. ^c, Adamu, J. A. ^d, Abiah, I. H. ^e, Isangedighi, R. F. ^a and Umanah, I. J. ^f

^a Department of Animal and Environmental Biology, Faculty of Biological Science, University of Uyo, Akwa Ibom State. Nigeria.

^b Aegis One Consults Limited, Port Harcourt, Rivers State, Nigeria.
 ^c Department of Biochemistry, University of Uyo, Akwa Ibom State, Nigeria.
 ^d School of Computing and Engineering Technology, Teesside University, United Kingdom.
 ^e Department of Environmental Engineering Technology and Management, University of Port Harcourt, Rivers, Nigeria.

f Department of Surveying and Geoinformatics, University of Calabar, Cross River, Nigeria.

Authors' contributions

This work was carried out in collaboration of all authors. All authors read and approved the final manuscript.

Article Information

Open Peer Review History:

This journal follows the Advanced Open Peer Review policy. Identity of the Reviewers, Editor(s) and additional Reviewers, peer review comments, different versions of the manuscript, comments of the editors, etc are available here:

https://www.sdiarticle5.com/review-history/125202

Original Research Article

Received: 20/08/2024 Accepted: 23/10/2024 Published: 31/10/2024

*Corresponding author: Email: emeritusessien49@gmail.com;

ABSTRACT

The usage of contaminated drinking water, human population suffers from varied of water borne diseases. Therefore, it is necessary that the quality of drinking water be checked at regular time interval. This study is aimed at investigating the physicochemical parameters of tap water and sachet water sold in University of Uyo, Uyo, Akwa Ibom State, Nigeria. Two sites were considered for this study; Faculty of Biological Science and Male hostel for tap and sachet water respectively. The results revealed that temperature, dissolved oxygen, pH, turbidity, total dissolved solid, electrical conductivity and total hardness recorded 27.624±1.51 °C and 26.46±0.46 °C, 13.97±2.34 mg/L and 2.87±1.21 mg/L, 6.29±1.10 and 7.54±2.87, 8.34±4.5NTU and 1.14±0.5NTU, 118.23±29.5 mg/L and 17.65±5.05 mg/L, 331.57±50.43 μ S/cm and 71.12±23.33 μ S/cm and 95.58±44.70 mg/L and 10.07±3.91 mg/L for Tap water (TW) and Sachet water (SW) respectively. It was concluded that the values for TW were not considerably within the allowable limit by WHO, unlike SW. Therefore, SW was considered safe for human consumption. However, regular maintenance and management of the TW is recommended to enable it fit for human consumption.

Keywords: Comparative study; water parameters; tap water; sachet water; drinking water.

1. INTRODUCTION

"All living organisms on earth directly or indirectly depend on water which is one major and most important element to survive. It is made up of over 70% of the body mass in human" [1]. "It has been regarded as a universal solvent that can dissolve many chemicals which may be beneficial to man and its environment. In many developing countries, many infectious diseases are associated to water as it is one most important route for it spread and transmission" [2], "It has been stated than groundwater has greater importance to civilization than surface water, because groundwater is the largest reserve of drinkable water in regions where humans can live" [3] "Ground water is found beneath the ground surface and fills the voids in the rocks and soil; it is a source of water for wells, boreholes and springs" [4]. "Groundwater quality in a region is largely determined by both natural processes (dissolution and precipitation of minerals, groundwater velocity, quality of recharge waters and interaction with other types of water aquifers) and anthropogenic activities" [4]. "Thus, good drinking water is a luxury but one of the most essential requirements of life" [5]. "Due to the inability of government to meet the ever-increasing water demand, people resort to ground water sources such as shallow wells and boreholes as alternative water resources" [6], "Natural groundwater is a supposed good and quality water source but this can deteriorate as a result of inadequate source of protection and poor management. The two major sources of water are the ground and surface water. Boreholes and hand dug wells constitute ground water sources while streams, rivers, and lakes

are surface water sources" [7, 8]. "It is estimated that a population in the sub-Saharan Africa of over 1.5 billion depends on groundwater as source of drinking water. Over the years, groundwater has been extensively exploited. In Nigeria, over 120 million persons use boreholes as main source of drinking water" [9, 10]. "Millions of persons living in semi-urban areas depend on dug wells for water supply" [11].

"Pollution of ground water arises from different sources which include, splashing of runoff into wells, if left uncovered, insanitary condition during borehole construction, leachate from old burned waste pit, flooding at borehole site or latrine into the hole through cracks in aguifer and annular of the hole" [12]. "They also added that, other sources of contamination include closeness of borehole to septic tanks especially in cases of space as a constraint and boreholes are drilled around the area" [12]. "These ground water sources can easily be contaminated by faecal matter and thus increases the incidence and outbreaks of preventable water-borne diseases" [13]. "Packaged water is any potable water that is manufactured or processed for sale which is sealed into food-grade bottles, sachet or other containers and intended for human consumption" [14]. "Against all odds by government and private stakeholders in most developing countries, the supply of quality drinking water remains both an urban and most especially rural public health problem, including Mali, where diarrheal diseases continue to cause particularly high mortality" [15]. However, World Health Organization [15], reported that "about 1.1 billion people lack good quality of water and 2.4 billion do not have access to adequate sanitation. More

than 2 million people especially children below five years in developing countries with insufficient hygiene and sanitation. In many developing countries including Nigeria, clean pipe borne water availability is limited and inadequate for the teeming population. Thus, an increasing number of people in semi-urban areas in the country depend on dug wells and water vendors for water supply" [16]. "However, these water sources are unsafe without treatment, because of high level of perturbations by anthropogenic activities, including road construction" [17]. Human activities are a major source of water pollution making it unfit for food processing, plant, animal man consumption, industrial agricultural activities, fishing [18] and to mention but a few. However, before the advent of industrialization, the degree of contamination of water by pollutant was low. New age activities like manufacturing process led to pollution of service water source. Typical example is the of chemical industries construction [17] that released its effluent into the river. "In addition, agricultural processes involving the use of fertilizers, herbicides and pesticides produce toxic substances that are as well released as effluents into water bodies" (through water cycle as run off) [9]. "It is pertinent to understand that for water to be classified "clean and safe" for human consumption, it must be free from any form of organisms and chemical substances in concentrations sufficiently high to affect health" [19]. "Accurate and timely information on the water quality is necessary to arrest the problem through public policies and improvement on the implementation on water quality programmes. One of the most effective ways to communicate information on water quality trends is with indices. The water quality index (WQI) is commonly used for the detection and evaluation of water pollution and may be defined as 'a rating reflecting the composite influence of different quality parameters on the overall quality of water" [20]. "The indices are parts: broadly characterized into two physicochemical and biological (bacteriological) indices. Physicochemical indices are based on the values of various physicochemical qualities in a water sample. These are vital for water quality monitoring. A number of scientific procedures and tools have been developed to assess the water contaminants" [21]. "These procedures include the analyses of different parameters such as pH, turbidity, temperature, dissolved oxygen, alkalinity amongst others. These parameters can affect the drinking water quality if their values are considerably high in concentrations than the safe

limits set by the WHO and other regulatory bodies" [22]. "Several studies have been conducted to ascertain these parameters in varying drinking water sources, well water" [23,24,25], borehole water [26,27,28]. lake [29], packaged water [30,31] and stream/river water [32,33]. Thus, this study was aimed at investigating the physicochemical parameters of tap water and sachet water in University of Uyo, Uyo, Akwa Ibom State

2. METHODOLOGY

2.1 Study Area

This study was conducted in Uyo which is the capital city of Akwa Ibom State, Nigeria. It lies in the coastal zone of the tropical rainforest of Nigeria, within latitude 4°32' N and 5°33' N and longitude 7°25' E and 8°25' E. Uyo is located in the rain forest belt with an elevation of 1000mm above sea level. The climatic condition is warm humid, high temperature and heavy rain distribution almost all year round. The rainy season progresses from May and reaches its peak in August and diminishes by October, while the dry season begins in November and ends in April. Based on reports of the last population census, Uyo has an estimated population of 222,841 [34]. The specific locations were Faculty of Biological Science and Male hostel, University of Uyo, Permanent Site with coordinates 370 301 25¹¹E, 55⁰ 28¹15¹¹N.

2.2 Study Design

A total of six samples each from five (5) brands of sachet water were examined, giving a total of 30 samples analysed. The five brands were denoted as A, B, C D and E water which were selected randomly from hawkers and those selling in shops on different days, so as to obtained water products sealed on different days.

2.3 Sample Collection

This study was carried out in the month of May, 2024. Samples for Tap water (TW) collected from Faculty of Biological Science and Male hostel, University of Uyo. They were collected into a sterile container and stored in the refrigerator at 40°C until analysis was completed and 1:1 nitric acid was added to the sample for preservation. While, plastic sealed water was purchased from shops that sell Sachet Water (SW) and were all taken to Animal and Environmental Biology Laboratory for further analysis.

2.4 Determination of Physicochemical Parameters

All physicochemical parameters were analyzed within 24 hours of sample collection. The parameters analysed were eight which includes: Temperature, Dissolved Oxygen (DO), pH, Turbidity, Total dissolved solids (TDS), Electrical conductivity (EC) and Total hardness (TH). The instruments were a thermometer calibrated in degree Celsius for temperature, a pH meter (model HI 98130 Hanna) for pH, a digital turbidity meter (2100AN HARCH Model) for turbidity, a digital conductivity meter model NATOP PB5 (London, UK) for EC. DO, TDS and TH were done according to APHA [35] and Ademorati [36] respectively.

2.5 Data Analysis

All data were inputted into a Microsoft Excel Package, 2013 version. All result were presented as mean± standard deviation.

3. RESULTS

The physicochemical parameters determined for TW and SW in this study were temperature, DO, pH, turbidity, TDS, EC and TH as presented in Table 1. The temperature, DO and pH values of the samples ranged between 26.46-27.62°C, 2.87-13.97 mg/L and 6.29-7.54 respectively. DO levels amongst both samples were significantly different (p>0.05). Turbidity values for TW and SW were 8.34±4.5 NTU and 1.14±0.5 NTU respectively. There was a significant difference (p>0.05) in the values for turbidity and pH obtained amongst both samples. TDS, EC and TH recorded 118.23±29.5 mg/L and 17.65±5.05 mg/L, 331.57±50.43 μ S/cm and 71.12±23.33 μ S/cm and 95.58±44.70 mg/L and 10.07±3.91

mg/L for TW and SW respectively. They were statistically significantly different (p>0.05) amongst themselves.

4. DISCUSSION

Water is essential for life and its activities. However, chemical and biological processes of life are only successful when it is within the accepted quality standards. There are alterations in the physiochemical parameters, it is imperative that it goes through processes to improve it quality prior to such usage, especially for drinking, else, the pollution which is responsible for many adverse health conditions.

Based on our result, it is clear evidence to show that the reservoir (the tank), is slightly polluted. The sample parameters studied showed that the temperature values were within the allowable limit according to WHO [15]. Onwughara et al. [27] and Atiku et al., [37] reported similar results for borehole (tap water) samples. However, cool (low temperature) is more suitable for drinking, as higher water with temperature encourages the growth of microorganism. Thus, a contributing factor to the cause of odour, taste and colour [38], which is very unsafe for consumption. For TW. the result could be associated to the cold weather as of the time of collection of the samples. The month of May (period of collection) is a raining season in the temperate region like Akwa Ibom State. The suitable values for SW could be associated with the cold storage of the SW: as customers prefers cold water for conforms consumption. This study Afangideh et al., [39], that reported allowable temperature range (26-29.5°C) compared to low temperature range (22-23.8°C) reported by Akpen et al., [40]. This is clearly assumed to be as a result of refrigerating these products as

Table 1. Mean Standard Error of the physicochemical parameters of borehole and bottle water in urban area in Uyo, Akwa Ibom State, Nigeria

Physicochemical parameters	Units	TW	SW	WHO Limit [15]	Remarks
Temperature	°C	27.624±1.51	26.46±0.46	25-30	WL
Dissolved Oxygen	mg/L	13.97±2.34	2.87±1.21	5.0-10	AL/BL
pН	-	6.29±1.10	7.54±2.87	6.5-8.5	BL/WL
Turbidity	NTU	8.34±4.5	1.14±0.5	0-5	AL/WL
Total Dissolved Solid	mg/L	118.23±29.5	17.65±5.05	250-500	WL
Electrical conductivity	μS/cm	331.57±50.43	71.12±23.33	>500	WL
Total Hardness	mg/L	95.58±44.70	10.07±3.91	>500	WL

Keys: TW – Tap Water; SW – Sachet Water; BL - Below limits; WL - Within limits; AL - Above limit; WHO -World Health Organization

there were purchased from retailers. Danso-Boateng and Frimpong [41] reported 28.94°C and 28.81°C respectively for average temperatures of plastic sachet and bottled water brands produced and/or sold in Kumasi, Ghana. However, temperatures within this range are favourable for maximum growth of mesophyll bacteria including human diseases causing agents [42]. Water is conventionally acceptable when consumed cold (>20°C) [22].

DO levels in surface and underground water depend on the physical, chemical, and biological activities of water body [43]. The DO value obtained for TW was above allowable limit indicating aerobic and healthy state for algae growth. High DO combines with high water temperature and nutrient can create a conducive environment for algae growth and blooms; which pose it unfit for human consumption. The significantly low level of DO record for SW is likely attributed to the methods of processing. treatment and storage. According to Karimzadeh et al., [44], oxygen can be depleted during production and storage processes; this is to prevent oxidation reaction that can give rise to taste. The high level of DO in the TW is likely attributed to the process of pumping the water which cause aeration to take place. This agrees with Atiku et al., [37] that recorded above limit for DO for samples from river.

pH is a significant factor that impacts many biological and chemical processes. It is a water quality assessment parameter which is very important in evaluating water supply treatment [45]. The suitability of drinking water within pH range of 6.5 to 8.5 is considered acceptable [22]. Acid water tends to be corrosive to plumbing and faucets, particularly, if the pH is below 6. The TW was acidic which are suitable for plant, but poses threats to direct consumption by humans and animal; Okon et al., [46] reported that suitable pH level of fish is considerably within 7.0-8.0. However, BW samples showed allowable limits set by WHO [15]. Malini et al., [46], reported that packaged water (SW) with pH below 4 is usually marketed as "ultra-purified" or "ionized" water. This is because some water brands use a process called electrolysis or reverse osmosis to produce "ionized" water. This process has the ability to removes many natural minerals and salt from the water; thereby resulting to low pH level.

Turbidity is the degree of cloudiness of water and the measure to which water loses its transparency. Low insignificant levels of turbidity in drinking water may not pose significant effect in humans [47], but will affect the aesthetics of the water and could discourage consumption. In this result, the values were above the WHO [48] limit set for TW (borehole). The turbidity levels of the TW suggest high level of suspended materials, bacteria, planktons and dissolved organic and inorganic materials [49]. The allowable level recorded for SW was indicative of proper treatment (filtration) during processes of the product. This could account for the reason why total dissolved solids (TSS) were not insignificantly observed detectable in SW, which renders it good for consumption.

Higher TDS are reported to reduce water clarity, which could contribute to reduced photosynthetic activities and possibly lead to an increase in water temperature [50]. Beyond certain limit, TDS impacts a peculiar taste to water and reduces its portability. and may cause gastrointestinal irritation [51]. Both water samples indicated the availability of total dissolved solids (TDS). Although, TW recorded higher value which was recorded to be significant, both were within the permissible limits (>500 mg/l) of WHO [15]. However, low TDS (low minerals, cation and anions) water consumption in humans could lead to some health challenges such as goiter, hypertension, ischemic, heart disease, etc., especially, in the presence of poor dietary habits [52]. Low TDS in SW is likely attributed to the intensive processes involved in the production.

The ability of a solution to conduct an electrical current that is governed by the migration of the solutions which is dependent on the nature and numbers of the ionic species in that solution is known as Electrical conductivity (EC) is [49]. This ability is directly related to the concentration of ions in the water [44] which comes from dissolved salt and inorganic materials [53]. The level at which water can conduct electricity is directly proportional to the level of ions present, likewise the reverse is the case. Distilled or deionized water can act as an insulator due to its very low (if not negligible) conductivity value [54]. EC is an important tool in determining the purity of water. This study recorded both samples to be within the permissible limit (>500µScm⁻¹) [15]. This result conforms to Airaodion et al., [55] report that sachet water sold in Oyo state ranged 28.30-136.40µScm⁻¹; which although higher than our result, however within allowable limit for drinking water. The high level of EC in TW is likely attributed to lack of tank (reservoir) treatment.

The hardness of water is a property that decreases the ability to form soap lather and also increases scale formation in hot-water heaters and low-pressure boiler at high levels. For surface water the total hardness (TH) of water is mainly due to calcium and magnesium salts [56,57] and is derived from dissolved limestone or anthropogenic effluents. According to Durfor and Becker [58] hardness is classified into four, which includes; 0-60mg/l (soft), 61 -120mg/l (moderate), 121-180mg/l (hard) and >181mg/l (very hard). WHO [22] International standards for drinking water also classified total hardness of water <50mg/l as "soft water", 50-150mg/l as "moderately hard water" and >150mg/l as hard water. Based on these ranges of classification, the TW and SW could be grouped as "soft" and "moderate". This investigation proved that both samples were within recommended limit (>300 and >500mg/L) [22,15]. However, SW is safer for human consumption [59].

5. CONCLUSION

This study investigated the physicochemical parameters of tap water (TW) and sachet water (SW) sold in University of Uyo, Uyo, Nigeria. The results reveal that DO, pH and Turbidity did not meet recommended limits by World Health Organization (WHO) for TW. There is need for adequate sensitization and proper periodic monitoring and management of the water in the study areas to safeguard well-being of the exposed populace. For SW, all parameters, except DO were within the recommended limits by WHO, which renders the SW sold in the vicinity satisfactorily fit for human consumption and could be consumed for as long as 15 weeks if stored at room temperature.

DATA AVAILABILITY STATEMENT

The data that support the findings of this study are available from the corresponding author (EEA) upon request.

DISCLAIMER (ARTIFICIAL INTELLIGENCE)

Author(s) hereby declare that NO generative Al technologies such as Large Language Models (ChatGPT, COPILOT, etc) and text-to-image generators have been used during writing or editing of this manuscript.

COMPETING INTERESTS

Authors have declared that no competing interests exist.

REFERENCES

- Eldon E, Bradley S. Environmental science: study of interrelationships. New York: McGraw-Hill Publishing; 2004.
- 2. Tar A, Eneji I, Ande S, Oketunde F, Ande S, Shaaton R. Assessment of arsenic in drinking water in Makurdi metropolis of Benue State, Nigeria. J Chem Soc Nigeria. 2009;34:56-62.
- Udoessien E. Basic principles of environmental science. Uyo: Etiliew International; 2003. p. 12-16.
- 4. Devic GD, Djordjevic D, Sakan S. Natural and anthropogenic factors affecting the groundwater quality in Serbia. Sci Total Environ. 2014;468:933-942.
- 5. Ajewole G. Water: an overview. Nigeria: Nigerian Institute of Food Science and Technology; 2005. p. 4-15.
- 6. Lawal R, Lohdip Y. Physicochemical and microbial analysis of water from Mimyak River in Kanke LGA of Plateau State, Nigeria. Afr J Nat Sci. 2011;14:5-7.
- 7. Edori OS, Kpee F. Physicochemical and heavy metal assessment of water samples from boreholes near some abattoirs in Port Harcourt, Rivers State, Nigeria. Am Chem Sci J. 2016;14(3):1-8.

DOI: 10.9734/ACSJ/2016/22525.

8. Ebong SS, Etim DU, Otugo VN, Uko OE. Evaluation of physicochemical and microbiological characteristics of borehole water in Mgboushimini community of Rivers State, Nigeria. J Adv Med Med Res. 2018;27(8):1-9.

DOI: 10.9734/JAMMR/2018/42959.

- Obioma A, Nnenna I, Golden O. Bacteriological risk assessment of borehole sources of drinking water in some parts of Port Harcourt metropolis of Niger Delta, Nigeria. J Sci Technol Res. 2020;24:18477-18487.
 - DOI: 10.26717/BJSTR.2020.24.004093.
- Solana OI, Omotola FA, Ogungbayi GB, Opafola OT. Quantification of metals, physicochemical and microbiological properties of consumed sachet/surface waters in Ayetoro community, Ogun State, Nigeria. J Mater Environ Sci. 2020; 11(6):856-867.
- Zige DV, Ogbolosingha AJ, Agboun TDT. Physico-chemical and bacteriological

- quality of water from boreholes in Otuoke community, Bayelsa State, Nigeria. J Water. 2018;1(1):1-10.
- Essien OE, Bassey ED. Spatial variation of borehole water quality with depth in Uyo Municipality, Nigeria. In: 21st Century Watershed: 2012.
- Alonge O, Wakkala F, Ogbaga C, Akindele K. Bacterial analysis of barbecued meat (suya) from selected locations within Abuja, Nigeria. Paper presented at: 13th International Conference on Electronics, Computer and Computation (ICECCO); 2018; Abuja.
- Warburton DW. The microbiological safety of bottled waters. Food Sci Technol. 2000; New York: Marcel Dekker: 479-518.
- WHO (World Health Organization). A global overview of national regulations and standards for drinking-water quality. Geneva: WHO; 2018. Licence: CCBY-NC-SA3.0IGO.
- Idowu A, Oluremi B, Odubawo K. Bacteriological analysis of well water samples in Sagamu. Afr J Clin Exp Microbiol. 2011;12:34-38.
- Akpabio JU, Okon AO, Ebong GA, 17. Udoinyang EP, Essien EA, Josiah IU, Akpan AW. Perturbation of road construction and inorganic sedimentation on the macroinvertebrate fauna in the midstream segment of Qua Iboe River, Nigeria. Asian J Adv Res Rep. 2024;18(4):24-33. Article no.AJARR.113630. ISSN: 2582-3248.
- 18. Ademorati CMA. Environmental chemistry and toxicology. Ibadan: Foludex Press Ltd; 2006. p. 218.
- 19. Nsi EW, Uwanta EJ, Akpakpan AE, Ekwere IO. Analytical assessment of borehole water in some local government areas of Akwa Ibom State, South-South Nigeria. Eur Sci J. 2020;16(12):122-136.
- 20. Etim E, Odoh R, Itodo AU, Umoh SD, Lawal U. Water quality index for the assessment of water quality from different sources in the Niger Delta Region of Nigeria. Front Sci. 2013;3(3): 89-95.
- 21. Dissmeyer GE. Drinking water from forests and grasslands. Asheville, North Carolina: USDA Forest Service General Technical Report SRS-39; 2000.

- 22. WHO (World Health Organization). Guidelines for drinking-water quality. 4th ed. Geneva: WHO Press; 2011.
- Ezeribe A, Oshieke K, Jauro A. Physicochemical properties of well water samples from some villages in Nigeria with cases of stained and mottled teeth. Sci World J. 2012;7:1-3.
- 24. Mile I, Jande J, Dagba B. Bacteriological contamination of well water in Makurdi town, Benue State, Nigeria. Pak J Biol Sci. 2012;15(21):1048-1051.
- Aboh EA, Giwa FJ, Giwa A. Microbiological assessment of well waters in Samaru, Zaria, Kaduna State, Nigeria. Ann Afr Med. 2015;14:32.
- 26. Ibe S, Okplenye J. Bacteriological analysis of borehole water in Uli, Nigeria. Afr J Appl Zool Environ Biol. 2005;7:116-119.
- Onwughara NI, Ajiwe VE, Nnabuenyi HO, Chima CH. Bacteriological assessment of selected borehole water samples in Umuahia North Local Government Area, Abia State, Nigeria. J Environ Treat Tech. 2013;1(2):117-121.
- Isa MA, Allamin IA, Ismail HY, Shettima A. Physicochemical and bacteriological analyses of drinking water from wash boreholes in Maiduguri metropolis, Borno State, Nigeria. Afr J Food Sci. 2013;7:9-13.
- 29. Okorondu S, Anyadoh-Nwadike S. Bacteriological and physicochemical analysis of Oguta Lake water, Imo State, Nigeria. 2015;3(5-1).
- Ugochukwu S, Giwa F, Giwa A. Bacteriological evaluation of sampled sachet water sold in Samaru-Zaria, Kaduna State, Nigeria. Niger J Basic Clin Sci. 2015;12:6-13.
- 31. Halage AA, Ssemugabo C, Ssemwanga DK, Musoke D, Mugambe RK, Guwatudde D, Ssempebwa JC. Bacteriological and physical quality of locally packaged drinking water in Kampala, Uganda. J Environ Public Health. 2015;12(23):8-23.
- 32. Joshi DM, Kumar A, Agrawal N. Studies on physicochemical parameters to assess the water quality of river Ganga for drinking purpose in Haridwar district. Rasayan J Chem. 2009;2:195-203.
- 33. Lawal R, Lohdip Y. Physicochemical and microbial analysis of water from Mimyak River in Kanke LGA of Plateau State, Nigeria. Afr J Nat Sci. 2015;1119-1124.

- 34. Atser J, Udoh PU. Dimensions in rural water coverage and access in Akwa Ibom State, Nigeria. Afr J Environ Sci Technol. 2015.
 - DOI: 10.5897/AJEST2014.1805
- 35. APHA. Standard methods for the examination of water and waste water. 20th ed. Washington, DC: American Public Health Association; 1998.
- 36. Ademorati C. Standard methods for water and effluents analysis. Vol. 3. Ibadan: Foludex Press Ltd: 1996.
- Atiku S, Ogbaga CC, Alonge OO, Nwagbara OF. Comparative study of the physicochemical and bacteriological qualities of some drinking water sources in Abuja, Nigeria. Global J Pure Appl Sci. 2018;24:91-98.
- 38. Okoye C, Okoye A. Urban domestic solid waste management. Nimo: Rex Charles and Patrick Limited. 2008;5-7.
- Afangideh CB, Etuke I, Imoh UU, Etuke J, Bassey EJ. Physiochemical assessment on borehole water quality in Uyo Metropolis. Int J Innovative Res Adv Eng. 2021;8:222-238.
- 40. Akpan GD, Kpoghol IS, Oparaku LA. Quality assessment of sachet and bottled water sold in Gboko, Benue State, Nigeria. Nigerian J Technol (NIJOTECH). 2018;37(1):241-248.
- Danso-Boateng E, Frimpong IK. Quality analysis of plastic sachet and bottled water brands produced or sold in Kumasi, Ghana. Int J Dev Sustain. 2013;2(4):2222-2232.
- 42. Onweluzo JC, Akuagbazie CA. Assessment of the quality of bottled and sachet water sold in Nsukka Town. Agro-Science. 2010;9(2):104-110.
- 43. Mulla J, Asif S, Abed S, Pardhan V. Ground water quality assessment of Babalgaon District Latur. J Chem Biol Phys Sci. 2012;2(1):501-504.
- 44. Karimzadeh AH, Khajevandi M, Hosseini SH. Evaluation of the quality of bottled water in Tehran City, Iran: bacterial and physical–chemical parameters. Int J Environ Res. 2015;10(2):222-229.
 - DOI: 10.5897/IJER2015.1227
- 45. Odu NN, Omunakwe AL, Millicent M. Comparative assessment on the physicochemical water quality of wells and boreholes in two Rivers State

- communities, Nigeria. Int J Res Stud Microbiol Biotechnol. 2020:5(6):5-20.
- Malini S, Vishnupriya G, Sai Sandhya P. Alkaline water: does it worth the hype? Indian J Endocrinol Metab. 2017;21(1-2):24-29.
 - DOI: 10.4103/ijem.IJEM_90_16
- 47. Okon AO, Udoinyang EP, Essien EA. Growth performance of the African catfish, *Clarias gariepinus* fingerlings fed four commercial feeds. J Wetlands Waste Manag. 2020;4(1):51-55.
- 48. WHO. Guidelines for drinking-water quality [electronic resource]: incorporating first addendum. Recommendation. 2006:1.
- WHO. Turbidity guidelines for drinkingwater quality.
 - ISBN: 978-92-4-155500-8, 2017.
- Sa'eed M, Mahmoud A. Determination of some physicochemical parameters and some heavy metals in boreholes from Fagge L.G.A of Kano Metropolis Kano State, Nigeria. World J Anal Chem. 2014;2:42-46.
- Harrison RM. Understanding our environment: an introduction to environmental chemistry and pollution. Royal Society of Chemistry; 2017.
- 52. Singh P, Fahemi N, Singh RV. Indian J Environ Sci. 2012;13(2):175-177.
- Akpoborie IA, Ehwarimo A. Quality of packaged drinking water produced in Warri Metropolis and potential implications for public health. J Environ Chem Ecotoxicology. 2012;4(11):195-202.
- Department of Wildlife and Fisheries Sciences. Plant identification. In: Aqua Plant: A Pond Manager Diagnostics Tools; 2014.
- 55. NOAA. Harmful algal blooms. In: National Ocean Service; 2014.
 - Available:http://oceanservice.noaa.gov/haz ards/hab
- 56. Airaodion AI, Airaodion EO, Osemwowa EU, Ogbuagu EO, Ogbuagu U. Quality assessment of sachet and bottled water in Ogbomoso Metropolis, Nigeria. Asian Food Sci J. 2019;9(2):1-15.
- 57. Gopalkrushna MH. Assessment of physico-chemical status of ground water samples in Akot city. Res J Chem Sci. 2011;1(4):117-124.

- 58. Kumar J, Pal A. Water quality monitoring of Ken River of Banda District, Uttar Pradesh, India. Elixir Pollution. 2012;42: 6360-6364.
- 59. Durfor CN, Becker E. Public water supplies of the 100 largest cities in the United States, 1962. Vol. 1812. US Government Printing Office; 1964.

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of the publisher and/or the editor(s). This publisher and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

© Copyright (2024): Author(s). The licensee is the journal publisher. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Peer-review history:
The peer review history for this paper can be accessed here:
https://www.sdiarticle5.com/review-history/125202