

Journal of Advances in Biology & Biotechnology

Volume 27, Issue 8, Page 306-314, 2024; Article no.JABB.119546 ISSN: 2394-1081

Genetic Variability and Trait Association Studies of Internode Length and Strong Culm-Related Traits in Inter Sub-specific Cross Derived Recombinant Inbred Lines in Rice (Oryza sativa L.)

Mamidi Akshay a,b, Lavuri Krishna c, Jyothi Badri b*, Kalyani M. Barbadikar b and D. Sanjeeva Rao b

 Department of Genetics and Plant Breeding, College of Agriculture, Professor Jayashankar Telangana State Agricultural University (PJTSAU), Rajendranagar, Hyderabad -500030, India.
 ICAR-Indian Institute of Rice Research (ICAR-IIRR), Rajendranagar, Hyderabad -500030, India.
 Institute of Rice Research (IRR), PJTSAU, Rajendranagar, Hyderabad -500030, India.

Authors' contributions

This work was carried out in collaboration among all authors. Author JB was responsible for the study conceptualization, supervision, writing-review and editing of the manuscript. Author MA handled the phenotyping and data analysis, as well as writing and editing the manuscript. Authors LK, KMB, and DSR contributed to writing and review. Facilities were provided by Author JB. All authors read and approved the final manuscript.

Article Information

DOI: https://doi.org/10.9734/jabb/2024/v27i81143

Open Peer Review History:

This journal follows the Advanced Open Peer Review policy. Identity of the Reviewers, Editor(s) and additional Reviewers, peer review comments, different versions of the manuscript, comments of the editors, etc are available here:

https://www.sdiarticle5.com/review-history/119546

Original Research Article

Received: 15/05/2024 Accepted: 17/07/2024 Published: 20/07/2024

*Corresponding author: E-mail: jyothirishik@gmail.com;

Cite as: Akshay, Mamidi, Lavuri Krishna, Jyothi Badri, Kalyani M. Barbadikar, and D. Sanjeeva Rao. 2024. "Genetic Variability and Trait Association Studies of Internode Length and Strong Culm-Related Traits in Inter Sub-Specific Cross Derived Recombinant Inbred Lines in Rice (Oryza Sativa L.)". Journal of Advances in Biology & Biotechnology 27 (8):306-14. https://doi.org/10.9734/jabb/2024/v27i81143.

ABSTRACT

Internode length, plant height and culm thickness are the primary traits affecting the strength of culm in rice. The present investigation was carried out to study genetic variability and trait association of internode length and strong culm related traits in recombinant inbred lines (RILs) in rice. The lodging stress is influenced by intricate interplay of several factors and many questions remain unanswered. To elucidate the complex lodging phenomenon, traits viz., the length of uppermost internode (IL1), second internode (IL2), third internode (IL3), fourth internode (IL4), fifth internode (IL5), sixth internode (IL6), number of internodes (INN), plant height (PH), pushing resistance (PR) and culm thickness (CT) were investigated. Analysis of Variance (ANOVA) displayed significant variation in RILs for all the traits studied. The investigation revealed high estimates of PCV and GCV along with high heritability and genetic advance as percent of mean (GAM) for traits under investigation revealing the role of additive gene effect and selection of these attributes will be valuable for rice improvement. Association studies revealed that strong culm is reliant on internode length of basal primary internodes and CT. Thus, the direct selection of culm thickness and lower basal internode length can improve the breaking-type lodging resistance in rice. Our conceptual perceptions are expected to provide valuable information to improve the culm strength in rice.

Keywords: Internode length; inter sub-specific cross; PCV; GCV; heritability; GAM; correlation.

1. INTRODUCTION

Rice is the main staple food for 40% of the world's population and its production has increased many folds in the past decades, due to green revolution. Extensive cultivation of the developed high-yielding semi-dwarf varieties led to increase in grain production, consequently averting lodging and food shortage. This convinced many breeders for the use of semidwarf varieties. However, despite the short stature conferred by sd1 gene, lodging is now a major concern in rice as rice breeders are developing new varieties with increased plant biomass and harvest index to further increase the grain yield. Recently, several genes associated with grain yield have been identified. Gn1a [1], GS3 [2], DEP1 and WFP [3,4] and are being utilized to develop high yielding varieties. To sustain this breeding objective, there is a need to develop varieties with strong culm, to bear the heavy panicles and abate the damage from cyclones. Lodging can cause severe yield loss and poor grain quality as a result of reduced canopy photosynthesis, increased respiration and reduced translocation of nutrients. Lodging primarily occurs at the maturity and harvesting stage, when the plant's stem is too weak to support the panicle weight and during this vulnerable stage a small wind force can cause lodging. Previous reports have shown that plant height, stem diameter and thickness are highly correlative to the lodging resistance [5,6,7]. Green revolution resulted in high-yielding varieties with dwarf plant stature but not suitable

to cope with the current climate adversities. To avert this problem, we need more robust and strong culm rice varieties.

Stem lodging results from the interaction and balance of different forces like culm strength and external environmental forces (typhoons and severe cyclones). Stem lodging is of two types viz., stem bending-type and stem breaking-type [8]. Rice genotypes differ widely in their lodging resistance, which is a complex phenomenon and is determined by many component traits. The stem traits contributing to lodging resistance include basal internode lengths and thickness. plant height, leaf sheath wrapping and pushing resistance. The plant height is determined by internode length, which has an important effect on lodging resistance of the stem. The elongation of the internode is expected to influence the lodging resistance. It is also well known that the biomass production potential of semidwarf varieties is lower than tall varieties because of high leaf area density in the canopy and low CO₂ diffusion efficiency in semidwarf varieties [9]. Furthermore, sd1 negatively affect the biomass and grain weight in rice [10]. Therefore, to break the yield ceiling in rice, designing the new plant type (NPT) [11] with high biomass, long and strong culms that resist the lodging would be an effective strategy. Most of the present-day high vielding indica cultivars are short- statured and are prone to lodging, whereas japonica tend to have thick culm and high flexibility due to bending stress. A good level of lodging resistance can be achieved through different combinations of strong culm traits. Thus, a viable strategy is to combine novel germplasm of tropical *japonica* and *indica* and harness large genetic variability and desirable alleles for strong culm.

Phenotypic selection based on their performance may not be effective because these genotypes may perform poor in further segregating generations [12], thus it is very crucial to select the lines based on heritability and genetic advance. Therefore, assessment of variability is essential to design selection criteria for the improvement of culm strength, consequently grain yield. To improve the complex trait like strong culm, it is inevitable to know how attributing traits interact with one another complementing the grain yield. In this context, it is imperative to assess the influence of internode length on lodging resistance. Thus, the present was conducted to assess Genetic variability and trait interrelationship studies of internode length and strong culm-related traits in RILs derived from inter sub-specific cross in rice.

2. MATERIALS AND METHODS

A set of 353 RILs and six checks were evaluated during wet season (WS) 2023 at ICAR-IIRR, Hyderabad. The RILs were sown in the raised bed and transplanted into the main field 27 days after sowing with the spacing of 20 x 15 cm in an augmented randomized complete block design (ARCBD). RILs were planted only once while the checks were replicated in all seven blocks. All the recommended package of practices were

followed for the good establishment of the crop. RILs were evaluated and observations were recorded on random four plants in each line for morphological traits viz., plant height (PH) (cm), number of internodes (INN), length of first internode (IL1), length of second internode (IL2), length of third internode (IL3), length of fourth internode (IL4), length of fifth internode (IL5), length of sixth internode (IL6), pushing resistance (PR) and culm thickness (CT) of fourth internode. The genotypic coefficient of variation (GCV) and phenotypic coefficient of variation (PCV) were estimated according to the method elucidated by Burton [13] and the estimates for variability were treated as per the categorization proposed by Sivasubramanian and Madhavamenon, [14]. The broad sense heritability (h2) and GAM were calculated as per Lush [15] and Johnson et al. [16]. The degree and direction of association between variables were estimated by using Karl Pearson's Coefficient of correlation (r) utilising variance and covariance of the variables.

The following traits were determined as per Ookawa et al. [17] and Badri et al. [18]

Culm thickness (CT) =
$$[(a_1+b_1)/2] - [(a_2+b_2)/2]$$

Where a_1 is outer diameter of minor axis, b_1 is outer diameter of major axis, a_2 is the inner diameter of minor axis, b_2 is inner diameter of major axis.

PR is the prostrate tester reading value. The prostrate tester was used to measure the pushing resistance of the culm (Fig. 1).

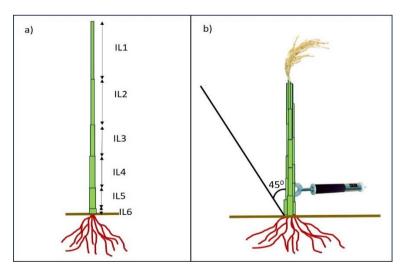


Fig. 1. Representation of some of the measured traits in this study a) Internode elongation and number b) Determination of pushing resistance using prostrate tester (DIK-7400, Daiki Rika Kogyo Co. Ltd., Tokyo, Japan

3. RESULTS AND DISCUSSION

It is imperative to identify the essential traits that different breeding methods can employ for crop improvement. The detailed knowledge variability, heritability, magnitude and direction of interaction between strong culm and attributing traits offers an opportunity to establish an effective selection criterion in crop plants. In the present study, the tropical japonica line IRGC 39111, possessing strong culm was used as a donor parent against mega variety swarna to develop RILs. The RILs elicited great phenotypic variability, particularly related to NPT phenology. The Analysis of variance (ANOVA) demonstrated that all the lines were significantly different for all the traits studied (Table 1). The parents were significantly different for all traits. Swarna was dwarf with short and weak culm but IRGC 39111 was taller than swarna with wider and thicker culm. The RILs derived from them showed tremendous transgressive segregation. distribution of traits was continuous and indicated that the traits were controlled by a minor genes and are typical quantitative traits (Fig. 2).

The variability analysis revealed that the PCV and GCV values for traits IL1, IL2, IL3 were similar with high heritability and genetic advance as percent of mean connoting no environmental influence on these traits and indicating the role of additive gene action. Thus, direct selection of these traits can be effective in breeding for stem bending-type of lodging, which is often seen in the upper internodes of rice. The PCV was higher than GCV for IL4, PR, PH and CT indicating the apparent influence environment apart from genotypes (Table 2). The traits IL5 and IL6 also connotated high PCV, GCV, heritability and GAM indicating most likely the heritability is due to additive gene action. The PCV and GCV were higher in the following traits viz., IL1 (21.11, 21.11), IL2 (21.09, 21.09); IL3 (22.85, 22.85); IL4 (31.46, 31.14), IL5(68.2, 68.2), IL6 (229.47, 229.47), INN (13.63, 13.63), PR (32.11, 28.99), PH (12.85,12.07), CT (30.55, 26.33). This result was concomitant with the findings of Zhu et al. [19]; Reddy et al. [20], Zhao et al. [21]. The observed variability among RILs probably be attributed to the inherent genetic differences and the environment in which they were grown. The mean values and genetic parameters are presented in Table 2.

The heritability for all the characters studied was high (>80%) and it ranged from 81.5-100% (Table 2). Heritability coupled with GAM was

found to be more useful for selection [16]. In the present study, GAM ranged from 19.07 (CT) -473.4 (IL6). The traits IL4, IL5 and IL6 recorded high GAM and high heritability indicating they are governed by additive gene action and these traits were less influenced by the environment. Selection of these traits can be effective to improve Stem breaking-type of lodaina resistance, which is often seen in lower internodes. These results confirm that there is a possibility of direct selection for these traits. similar results were observed by Zhao et al. [21] and Zhu et al. [19]. CT recorded high heritability (90.93 %) and moderate GAM (19.07) indicating the role of both additive and non-additive gene action similar to the findings Cui et al., [22].

Pearson's correlation is the measure of interrelationship between the traits [20]. All four upper elongated internodes and INN contributed significantly to the plant height. The correlation analysis also disclosed that the PR (measure of culm strength) was positively correlated with CT, INN, IL1, IL2, IL3, PH and negatively correlated with IL4, IL5, IL6 (Table 3). The negative correlation of IL4, IL5, IL6 with culm thickness and pushing resistance depicts the role of these plant attributes for breaking type lodging resistance. This result was in concomitant with the reports of Rani et al. [23]; Zhang et al. [24]; Zhao et al. [21]. A Strong positive correlation between PR, CT and PH may suggest that this might be due to higher leaf sheath wrapping and secondary cell wall components like lignin, cellulose and hemicellulose attributing bending stress in tropical japonica [17].

A negative relationship of IL4, IL5 and IL6 with CT and PR has been observed, which suggests that the longer primary internodes may account for low thickness and resistance and result in lodging. The strong association between PR and CT traits revealed that the thickness is strongly associated with the culm strength. Hence selecting the plants with a higher CT and lower basal internodal length strongly improves the culm strength in rice. Similarly, all the internode were significantly and correlated with each other indicating that the selection may be positive for these traits. A critical analysis of the character association results revealed a favorable correlation between the basal primary internodes and PR, CT and PH. As result, choosing for characteristics may improve the culm strength in rice.

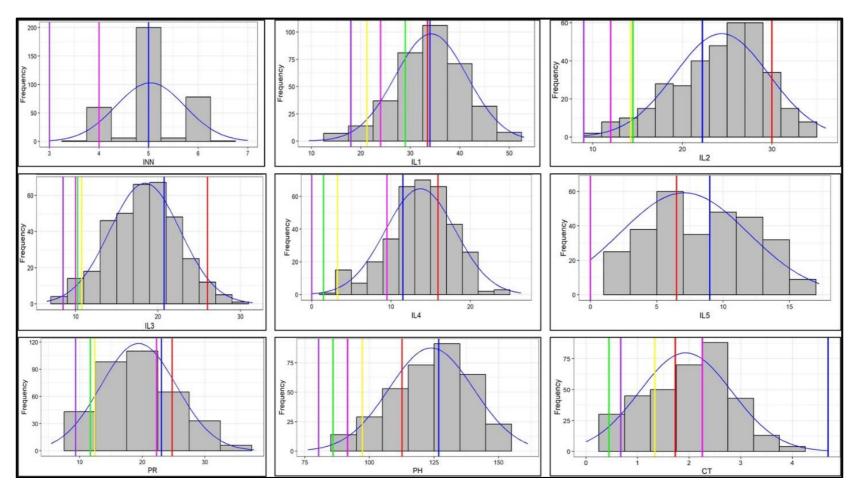


Fig. 2. Frequency distribution of traits INN, IL1, IL2, IL3, IL4, IL5, PR, PH, CT measured in this study. Coloured lines of Green, red, purple, blue, yellow and magenta plotted lines represent the check values of Swarna, IRGC 39111, Samba Mahsuri, Cuba 65, Tellahamsa, RMS 2085 respectively

Table 1. Analysis of variance for plant height and lodging resistance traits in RILs

Source	Df	INN	IL1	IL2	IL3	IL4
Blocks (eliminating Treatments)	6	0ns	0ns	0ns	0ns	0.38ns
Treatments (ignoring Blocks)	358	0.6**	61.85**	37.75**	24.29**	27.11**
Treatments: Check	5	3.97**	304.46**	419.12**	363.43**	279.32**
Treatments	352	0.47**	52.21**	26.44**	17.73**	18.58**
Treatment: Test vs. Check	1	29.17**	2241.44**	2113.93**	636.65**	1770.04**
		IL5	IL6	PR	PH	СТ
		0ns	0ns	6.83ns	9.43ns	3.52ns
		26.65**	7.54**	43.23**	345.95**	0.58
		116.49**	0ns	325.11**	2151.35**	16.63**
		23.23**	7.51**	38.85**	253.32**	0.35
		780.54**	55.37**	174.14**	23926.56**	0.19

* P <= 0.05; ** P <= 0.01

Table 2. Summary statistics for plant height and lodging resistance related traits in 353 Swarna/ IRGC 39111 RILs

Traits	Swarna	IRGC 39111	P2-P1	Mean ± SE(RILs)	CV%	PCV	GCV	hBS	GAM
INN	4±0.01	5±0.03	1	4.95±0.03	14.90	13.63	13.63	100	28.12
IL1	29±0.01	34±0.07	5	33.53±0.37	22.36	21.11	21.11	100	43.56
IL2	15±0.12	30±0.19	15	23.7±0.29	24.71	21.09	21.09	100	43.51
IL3	10±0.1	26±0.13	16	18.05±0.23	26.02	22.85	22.85	100	47.15
IL4	1.5±0.01	12.5±0.13	11	13.42±0.23	33.93	31.46	31.14	97.95	63.57
IL5	-	6.5±0.21	6.5	8.62±0.21	43.98	68.2	68.2	100	140.7
IL6	-	-	-	5.42±0.36	60.38	229.47	229.47	100	473.4
PR	15.5±0.01	24.5±0.12	9	19.19±0.31	32.91	32.11	28.99	81.5	53.99
PH	85±0.01	115.25±0.1	30.25	121.64±0.89	14.63	12.85	12.07	88.34	23.41
CT	1.27±0.1	1.71±0.11	0.44	1.92±0.04	48.56	30.55	26.33	90.93	19.07

Table 3. Correlation coefficients between traits related to basal internodes, plant height and lodging resistance traits in Swarna/ IRGC 39111 derived RIL population

Traits	INN	IL1	IL2	IL3	IL4	IL5	IL6	PR	PH	СТ
INN	1									
IL1	0.23***	1								
IL2	0.33***	0.70***	1							
IL3	0.34***	0.35***	0.65***	1						
IL4	0.51***	0.21**	0.48***	0.67***	1					
IL5	0.46***	0.05	0.12**	0.30***	0.55***	1				
IL6	0.26***	-0.05	-0.1	0.06	0.19**	0.47***	1			
PR	0.12	0.06	0.12**	0.14**	-0.09	-0.05	-0.07	1		
PH	0.20**	0.17**	0.29**	0.35***	0.33***	0.03	-0.05	0.29***	1	
СТ	-0.12	0.09	0.13**	0.16**	-0.10**	-0.06	-0.02	0.18***	0.10	1

***P <= 0.01, ** P <= 0.05

^a Trait abbreviations are number of elongated internodes (INN); Lengths of first internode (IL1), second internode (IL2), third internode (IL3), fourth Internode (IL4), fifth Internode (IL5), sixth internode (IL6); pushing resistance (PR); plant height (PH); culm thickness (CT).

4. CONCLUSION

From the present study of interrelationships between internode length and strong culm traits, it is evident that basal primary internodes particularly IL4, IL5 and CT were most important for determining the strong culm trait in rice. This study also displayed strong association among PH, PR and CT. This indicated that the tall plant with thick culm and dense leaf sheath wrapping would resist lodging. Thus, selection for lower basal internode length, culm thickness would give better response for culm strength in the present material. Simultaneous selection of IL4, IL5 and CT might be effective in the improvement of strong culm in rice. This study provides scope for attaining targeted strong culm in rice.

DISCLAIMER (ARTIFICIAL INTELLIGENCE)

Author(s) hereby declares that NO generative AI technologies such as Large Language Models (Chat GPT, COPILOT, etc) and text to-image generators have been used during writing or editing of manuscripts.

ACKNOWLEDGEMENT

The first author sincerely recognizes the guidance provided by Dr. Jyothi Badri, Senior scientist, IIRR; Dr. L. Krishna, Principal scientist, IRR, PJTSAU and Dr. R. M. Sundaram, Director, IIRR for providing all of the necessary facilities for our investigation.

COMPETING INTERESTS

Authors have declared that no competing interests exist.

REFERENCES

- Ashikari M, Sakakibara H, Lin S, Yamamoto T, Takashi T, Nishimura A, et al. Cytokinin oxidase regulates rice grain production. Science. 2005;309(5735):741-5.
- 2. Fan C, Xing Y, Mao H, Lu T, Han B, Xu C, et al. GS3, a major QTL for grain length and weight and minor QTL for grain width and thickness in rice, encodes a putative transmembrane protein. Theor Appl Genet. 2006;112:1164-71.
- 3. Huang X, Qian Q, Liu Z, Sun H, He S, Luo D, et al. Natural variation at the DEP1 locus enhances grain yield in rice. Nat Genet. 2009;41(4):494-7.

- Miura K, Ikeda M, Matsubara A, Song XJ, Ito M, Asano K, et al. OsSPL14 promotes panicle branching and higher grain productivity in rice. Nat Genet. 2010;42(6):545-9.
- Long W, Dan D, Yuan Z, Chen Y, Jin J, Yang W, et al. Deciphering the genetic basis of lodging resistance in wild rice Oryza longistaminata. Front Plant Sci. 2020;11.
- Kashiwagi T, Madoka Y, Hirotsu N, Ishimaru K. Locus prl5 improves lodging resistance of rice by delaying senescence and increasing carbohydrate reaccumulation. Plant Physiol Biochem. 2006;44:152-7.
- 7. Chigira K, Yamasaki M, Adachi S, Nagano AJ, Ookawa T. Identification of novel quantitative trait loci for culm thickness of rice derived from strong-culm landrace in Japan, Omachi. Rice. 2023:16(1).
- 8. Mulsanti IW, Yamamoto T, Ueda T, Samadi AF, Kamahora E, Rumanti IA, et al. Finding the superior allele of japonica-type for increasing stem lodging resistance in indica rice varieties using chromosome segment substitution lines. Rice. 2018;11.
- Nomura T, Arakawa N, Yamamoto T, Ueda T, Adachi S, Yonemaru JI, et al. Next generation long-culm rice with superior lodging resistance and high grain yield, Monster Rice 1. PLoS One. 2019;14(8).
- Okuno A, Hirano K, Asano K, Takase W, Masuda R, Morinaka Y. New approach to increasing rice lodging resistance and biomass yield through the use of high gibberellin producing varieties. PLoS One. 2014;9(2).
- Bagudam R, Eswari KB, Badri J, Devi GL, Vidhya LJRKJ, Bhavani P, et al. Morphological and molecular characterization of new plant type core set for yield and culm strength traits in rice (*Oryza sativa* L.). J Plant Biochem Biotechnol. 2021;30:233-42.
- Akshay M, Chandra BS, Devi KR, Hari Y. Genetic variability studies for yield and its attributes, quality and nutritional traits in rice (*Oryza sativa* L.). Pharm Innov J. 2022;11(5):167-72.
- 13. Burton GW. Quantitative inheritance in grasses. In: Proceedings of 6th International Grassland Congress, Pennsylvania State College, USA. 1952;277-83.

- Sivasubramanian J, Madhavamenon. Genotypic and phenotypic variability in rice. Madras Agric J. 1973;12:15-6.
- Lush JL. Intra-sire correlation and regression of offspring on dams as a method of estimating heritability of characters. Proc Am Soc Anim Prod. 1940;33:293-301.
- Johnson HW, Robinson HF, Comstock RE. Estimates of genetic and environmental variability in soybean. Agron J. 1955;47:314-8.
- Ookawa T, Hobo T, Yano M, Murata K, Ando T, Miura H, et al. New approach for rice improvement using a pleiotropic QTL gene for lodging resistance and yield. Nat Commun. 2010;1(1):132.
- Badri J, Padmashree R, Anilkumar C, Mamidi A, Isetty SR, Swamy AVSR, Sundaram RM. Genome-wide association studies for a comprehensive understanding of the genetic architecture of culm strength and yield traits in rice. Front Plant Sci. 2024;14:1298083.
- 19. Zhu LH, Zhong DB, Xu JL, Yu SB, Li ZK. Differential expression of lodging

- resistance related QTLs in rice (*Oryza sativa* L.). Plant Sci. 2008;175(6).
- 20. Reddy VRP, Vemireddy LR, Srividhya A, Reddy KH, Siddiq EA. Genetic analysis of culm strength and its related traits in rice (*Oryza sativa* L.). Appl Biol Res. 2019;21(2).
- 21. Zhao DD, Son JH, Farooq M, Kim KM. Identification of candidate gene for internode length in rice to enhance resistance to lodging using QTL analysis. Plants. 2021;10(7):1369.
- Cui D, Wei J, Nie L, Chen F. Study on the genetic model stem characters in wheat. J Henan Agric Sci. 2002;9:4-7.
- 23. Rani GM, Satyanarayana PV. Selection of lodging resistant lines in early generations using linked molecular markers and phenotypic traits in rice. Int J Curr Microbiol Appl Sci. 2018;7(1):1638-50.
- 24. Zhang F, Jin Z, Ma G, Shang W, Liu H, Xu M. Relationship between lodging resistance and chemical contents in culms and sheaths of Japonica rice during grain filling. Rice Sci. 2010;17:311-8.

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of the publisher and/or the editor(s). This publisher and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

© Copyright (2024): Author(s). The licensee is the journal publisher. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Peer-review history:

The peer review history for this paper can be accessed here: https://www.sdiarticle5.com/review-history/119546