
____________________________________________________________________________________________

*Corresponding author: Email: alawodett@fuotuoke.edu.ng, onatop2003@yahoo.com;

American Chemical Science Journal
4(6): 890-900, 2014

SCIENCEDOMAIN international
www.sciencedomain.org

Prediction of Substituent Types and Positions
on Skeleton of Myrcane-Type Monoterpenoids
using Generalized Regression Neural Network

Taye T. Alawode1* and Kehinde O. Alawode2

1Department of Chemical Sciences, Federal University Otuoke, Bayelsa State, Nigeria.
2Department of Electrical and Electronic Engineering, Osun State University, Osogbo, Osun

State, Nigeria.

Authors’ contributions

This work was carried out in collaboration between both authors. Both authors read and
approved the final manuscript.

Received 15th May 2014
Accepted 11th July 2014

Published 24th July 2014

ABSTRACT

Aim: To explore the ability of GRNN as a tool of structural elucidation in predicting the
substituent types on myrcane, one of the representative skeletons of monoterpenoids.
Methodology: Generalized regression neural network (GRNN) was used in the study.
Carbon-13 (13C) NMR chemical shift values of skeletons of 104 myrcane monoterpenoids
were used as the input data used for the network. Each substituent type on the skeleton of
the different compounds were coded and used as the output data for the network. These
data were used to train the network while the spread constant of the GRNN was varied.
After training, the network was simulated using 15 test compounds.
Results: GRNN at a spread constant of 1.0 gave the best result. The network had
between 80 to 90% recognition rates in 14 of the 15 test compounds. The network could
not predict correctly the substitution pattern on ‘compound 11’ as all the positions was
predicted to be unsubstituted. This could be due to the non-existence of precise rules for
the compound.
Conclusion: GRNN, one of the architectures of Artificial Neural Networks (ANNs), could
be a powerful aid in the structural elucidation of organic compounds.
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1. INTRODUCTION

Studies in structural elucidation of monoterpenoids are of importance because this class of
naturally occurring compounds possesses important pharmacological activities [1]. The
advent of Computer Assisted Structural Elucidation (CASE) methods has simplified the
process of interpretation of complex organic compounds, especially in the field of natural
products.  Structural elucidation (using CASE methods) involves finding, from structural
information of an unknown compound derived from chemical and/or spectra evidence, the
fittest structural formula that satisfies a set of chemical and spectral boundary conditions [2].
An invaluable component of the CASE system is a high quality reference library containing
both structures and complete spectra or substructures and subspectra being representative
of the types of compounds encountered in the laboratory [3,4]. The premise implicit in the
spectrum interpretation is that if the spectrum of the unknown and a reference library
spectrum have a subspectrum in common, then the corresponding reference substructure is
also present in the unknown. The components generated by spectra interpretation are fed
into the structure generator, which will exhaustively generate all possible structures from
these components. Examples of structure generators include MOLGEN, GENIUS and
COCON. Their applications are described elsewhere [5].

The structure of any natural product is conventionally divisible into three sub-units: (i) the
skeletal atoms; (ii) heteroatoms directly bonded to the skeletal atoms or unsaturations
between them; and (iii) secondary carbon chains, usually bound to a skeletal atom through
an ester or ether linkage [6]. A procedure that utilizes 13C NMR for terpenoid skeleton
identification has been described previously. The program REGRAS, developed for the
expert system, SISTEMAT, could recognize the substructures and the skeleton present in a
compound [7]. When REGRAS was tested on skeleton elucidation of 35 terpenoid
compounds, excellent results were obtained [8]. Another program, MACRONO (also written
for SISTEMAT) could expunge chemical shifts not due to the skeletal carbons from the initial
dataset, which can then be input into SISTEMAT for skeletal identification. A new version of
the program was successfully tested in the identification of the substituents and skeletons of
60 compounds [6,9]. SISTEMAT has been found to achieve both high reliability and good
performance when applied to structural elucidations and chemical shift evaluations of
monoterpenoids. It has also been applied successfully to other classes of natural products
like diterpenes, triterpenes and flavonoids [10]. More recently, it was established that ANN
methods give fast and accurate results for identification of skeletons and for assigning
unknown compounds among distinct fingerprints (skeletons) of aporphine alkaloids [11]. In
the present work, we show that Generalized Regression Neural Networks (GRNNs), one of
the architectures of Artificial Neural Networks, can predict substituents’ positions and types
on the Myrcane-type monoterpenoid skeleton.

ANNs have been applied to the prediction of biological activity of natural products or
congeneric compounds [12,13], the identification, distribution and recognition of patterns of
chemical shifts from 1H-NMR spectra [14,15] and identification of chemical classes through
13C-NMR spectra [16]. ANNs are computational models derived from a simplified concept of
the brain, in which a number of nodes, called neurons, are interconnected in a network-like
structure [17]. Fig. 1 shows a single neuron model.
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Fig. 1. Single neuron model [18]

Neural networks are nonlinear processes that perform learning and classification. Artificial
neural networks consist of a large number of interconnected processing elements known as
neurons that act as microprocessors. Each neuron accepts a weighted set of inputs and
responds with an output.  In general, neural networks are adjusted/ trained to reach from a
particular input a specific target output until the network output matches the target. Hence
the neural network can learn the system. The learning ability of a neural network depends on
its architecture and applied algorithmic method during the training. Training procedure
ceases if the difference between the network output and desired/actual output is less than a
certain tolerance value. Thereafter, the network is ready to produce outputs based on the
new input parameters that are not used during the learning procedure. A neural network is
usually divided into three parts: the input layer, the hidden layer and the output layer. The
information contained in the input layer is mapped to the output layers through the hidden
layers.

A GRNN consists of four layers: input layer, pattern layer, summation layer and output layer
as shown in Fig. 2. The number of input units in the input layer depends on the total number
of the observation parameters. The first layer is connected to the pattern layer and in this
layer each neuron presents a training pattern and its output. The pattern layer is connected
to the summation layer. The summation layer has two different types of summation, which
are a single division unit and summation units. The summation and output layer together
perform a normalization of output set. In training of network, radial basis and linear activation
functions are used in hidden and output layers. Each pattern layer unit is connected to the
two neurons in the summation layer, S and D summation neurons. S summation neuron
computes the sum of weighted responses of the pattern layer. On the other hand, D
summation neuron is used to calculate un-weighted outputs of pattern neurons. The output
layer merely divides the output of each S-summation neuron by that of each D-summation
neuron, yielding the predicted value Y’i to an unknown input vector x as [18,19];

′ = ∑ . − ( , )∑ − ( , )( , ) = ∑ ( )
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yi is the weight connection between the ith neuron in the pattern layer and the S-summation
neuron, n is the number of the training patterns, D is the Gaussian function, m is the number
of elements of an input vector, xk and xik are the jth element of x and xi, respectively, is the
spread parameter, whose optimal value is determined experimentally.

Fig. 2. General structure of GRNN [18]

Compared to other ANN models such as the back propagation neural network model, the
GRNN needs only a fraction of the training samples a back propagation neural network
would need. Therefore it has the advantage that it is able to converge to the underlying
function of the data with only few training samples available [20]. Furthermore, since the task
of determining the best values for the several network parameters is difficult and often
involves some trial and error methods, GRNN models require only one parameter (the
spread constant) to be adjusted experimentally. This makes GRNN a very useful tool to
perform predictions and comparisons of system performance in practice. Previous works
relating the predictive capability of GRNN to backpropagation neural network and other
nonlinear regression techniques highlighted the advantages of GRNN to include excellent
approximation ability, fast training time, and exceptional stability during the prediction stage
[21,22].

2. METHODOLOGY

For identification purposes and for structural elucidation of new compounds, it is necessary
to have access to extensive list of their structural data. In the present study, we made use of
structural (skeletal) 13C data, substituents and stereochemical information of 119 Myrcane
compounds published by [1].This information can be extracted from data of Myrcane
monoterpenoids published in literature by isolating 13C values of the skeletal (carbon) from
those of the substituents. ANNs work through learning method, their training must therefore
be done with the use of well detailed and correct data to avoid an erroneous learning
process. Of the total of 119 compounds used in this study, only 15 were reserved for use as
test cases (these were not used in training the neural network). This is because ANNs learn
through examples and the test compounds can only be selected based on the
representativeness of their substitution patterns among the test compounds. Selection of test
compounds was largely done by visual inspection. The structure of the myrcane skeleton
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with the numbering of each carbon atom is shown in Fig. 3 while Fig. 4 shows the fifteen
selected test compounds.

Fig. 3. The myrcane skeleton

Fig. 4. The selected 15 test compounds

Three Excel worksheets containing coded information on the input and target data for the
training and test compounds were prepared. On the first row of the first sheet, the
compounds were assigned codes 1-104. In the first column of the same sheet, the positions
of each carbon atoms on the skeleton (as shown in Fig. 3) were coded as 1-10.  The 13C
chemical shift data for each Carbon at each of the 10 positions was recorded for each
compound. These represent the input data subsequently used in training of the net. Another
excel sheet in the format just described was prepared except that it contained 13C chemical
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shift data for the test compounds (coded 1-15). The 13C chemical shift data for skeletons of
the test compounds are presented in Table 1.

In preparing the target data, each substituent type (on first encounter) was assigned 3
number codes. These codes serve to identify the substituent while also taking into account
its possible stereochemistry (α or β) in various positions of the skeletons in other
compounds. Carbon positions without substituents were assigned a code of 0 while α and β
positions without substituent(s) were assigned codes of 1 and 2 respectively. For example,
OH group was given a code of 3, an α-OH is given a code of 4 while a β-OH was assigned a
code of 5.

After the construction of the worksheets, the data were transferred into the Neural Network
toolbox of MATLAB 7.8.0. From the command window, the ‘nntool’ command was used to
designate the imported data appropriately as ‘input’ or ‘target’ and to select the appropriate
network for training. The network types employed in the training of data include perceptron,
feed-forward back propagation (BP) and Generalized Regression Neural Networks. Several
network parameters including number of layers, training function, adaptation learning
function, performance function, number of neurons, were varied for feed-forward BP and
perceptron neural networks while for GRNN, only the spread constant was varied. The
effectiveness of training was assessed by simulation with the test data (not previously used
for training and therefore unknown to the network). The aim was to ascertain whether the
neural network would be able to predict correctly the substituents and their positions on the
myrcane skeleton. After trying several neural network types and network parameters, the
Generalized Regression Neural Network (GRNN) at a spread constant of 1.0 was found to
give the best results.

3. RESULTS AND DISCUSSION

The results obtained after training of the neural network and simulating with the test data
using GRNN are presented in Table 2. Percentage (%) recognition of the compounds was
calculated from the number of correctly predicted points relative to the total number of
positions on each compound (10). This ranged between 80% and 90%. Results for test
compounds 11 is not shown because the network presented all the positions on the skeleton
as un-substituted.  This may be due to the non-existence of precise rules for the compound.
From the results presented in Table 2,  the un-substituted positions (designated as ‘-’) on the
myrcane skeleton in all the compounds tested were correctly predicted except for the un-
substitued C-3 position  on test compound 5 which was predicted to hold a –Cl group. The
results obtained when perceptron and feed-forward backpropagation neural networks
(employing varying network parameters) were used are not presented since the substituents
predicted to be on the myrcane skeleton for all the test compounds, are largely inaccurate.

Structural determination of natural products usually requires vast experience in spectral
analysis. The fundamental stage in the process of structural elucidation is the determination
of the compound carbon skeleton as this forms the basic unit to which the substance
belongs. However, this is often difficult owing to high structure variety and diversity
encountered in natural products chemistry. Most research efforts are directed at developing
expert systems to help in this regard. Despite the progress, identifying the types, positions
and stereochemistry of substituents on the skeleton of an unknown compound can be a
daunting task to the unskilled.  The present work seeks to simplify this task.
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Table 1. 13C NMR chemical shift data for test compounds

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
C1 108.1 168.3 25.5 195.2 17.7 114.8 114.8 124.7 25.3 24.6 41.5 168.3 11.3 25.5 25.7
C2 135.3 141.7 131.1 146.6 133.3 143.6 142.6 144.4 131.6 71.1 66.9 141.0 134.9 131.8 131.0
C3 137.6 128.8 124.9 154.5 122.1 57.5 64.4 202.4 124 85.6 137.8 128.0 127.4 122.3 125.5
C4 133.1 74.8 26.6 27.7 25.7 43.4 43.0 32.7 25.6 26.4 137.1 69.5 26.0 26.2 23.1
C5 69.0 39.1 39.7 36.6 38.3 56.2 63.0 34.5 36.9 37.5 67.8 37.3 35.7 39.5 40.9
C6 71.9 30 137.1 140 74.2 139.8 139.8 79.5 27.7 83.0 71.3 24.9 145.5 142.5 80.0
C7 128.5 34.1 124.5 35.3 140.3 124.5 124.6 144.7 51.0 143.9 127.5 32.5 36.3 119.3 144.3
C8 110.5 67.8 58.7 68.7 117.9 39.7 40.4 114.2 202.8 119.2 110.5 62.3 68.2 65.2 114.0
C9 19.1 12.9 17.3 9.1 23.5 18.3 17.7 17.8 17.6 27.0 27.7 12.8 61.2 17.3 24.2
C10 28.3 22.2 16.0 111.7 38.5 12.6 11.8 25.1 19.6 26.8 28.0 19.5 111.1 16.2 17.7

Table 2. Expected (Exp.) and predicted (Pred.) substituents on myrcane skeleton

SITE 1 2 3 4 5 6 7 8
Exp. Pred. Exp. Pred. Exp. Pred. Exp. Pred. Exp. Pred. Exp. Pred. Exp. Pred. Exp. Pred.

C-1 Br,∆1 Br,∆1 OMe, Oxo Oxo, OH - - Oxo Oxo - - ∆1 ∆1 ∆1 ∆1 ∆1 ∆1

C-2 - - ∆2 ∆2 ∆2 ∆2 ∆2 ∆2 ∆2 ∆2 - - - - - -
C-3 ∆3 ∆3 β β - - - - - Cl α-Br α-Cl α-Cl α-Cl 3-oxo 3-oxo
C-4 - - Oxy Oxy - - - - - - - - - - - -
C-5 α-Cl β-Cl - - - - - - - - β-Br β-Cl α-Cl β-Cl - -
C-6 α-Cl α-Cl - - ∆6 ∆6 ∆6,10 ∆6,10 α-Cl α-Cl ∆6 ∆6 ∆6 ∆6 β -OGly β -OGly
C-7 ∆7 ∆7 - - - - - - Cl, ∆7 Cl, ∆7 - - - - ∆7 ∆7

C-8 Br Br Oxy Oxy OH OAc OGly OGly-(2’,-OAc) - - Cl Cl Cl Cl - -
C-9 - - - - - - - - - - - - - - - -
C-10 Β β β β - - - - Br, β Br, β - - - - α β
% Recognition 90.00 90.00 90.00 90.00 90.00 80.00 90.00 90.00
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SITE 9 10 12 13 14 15
Exp. Pred. Exp. Pred. Exp. Pred. Exp. Pred. Exp. Pred. Exp. Pred.

C-1 - - - - OMe, Oxo Oxo, OH - - - - - -
C-2 ∆2 ∆2 OH, α OH, β ∆2 ∆2 ∆2 ∆2 ∆2 ∆2 ∆2 ∆2

C-3 - - Oxy Oxy α α - - - - - -
C-4 - - - - Oxy Oxy - - - - - -
C-5 - - - - - - - - - - - -
C-6 - - Oxy Oxy - - ∆6,10 ∆6,10 ∆6 ∆6 α- OGly-(6’-

OFuc)
OGly-(6’-
OAra)

C-7 - - ∆7 , β ∆7 , β - - - - - - ∆7 ∆7

C-8 Oxo Oxo - - Oxy Oxy OGly-(3’MeBu-
4’,6’-Ac)

OGly-(3’MeBu-
4’,6’-Ac)

OGly-(OAc)3-[6’-
ORha-(OAc)3]

OGly-(OAc)3-[6’-
OAra-(OAc)3]

- -

C-9 - - - - - - OH OAc - - - -
C-10 α β α α β β - - - - β Β
% Recognition 90.00 90.00 90.00 90.00 90.00 90.00
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Programs have previously been written which could identify substituents and their positions
on the skeleton of natural products, though they are applied in the identification of skeletons
of unknown compounds. For example, the program REGRAS, by analysis of 13C NMR from
a given compound and, from ranges of chemical shifts, could identify the chemical functions
existing on specific positions of carbon skeletons and at the end of the procedure match the
types of carbon atoms obtained against a database, displaying as results the likely skeletons
of the question substance. This process was tagged ‘disfunctionalization’. The program
MACRONO could identify substituent groups attached to any of the atoms in the
conventional skeleton of a natural product. The program was developed for finding the
subspectra due to the carbons in the said substituent groups among the raw 13C NMR
spectroscopic data from any given natural product (by means of comparisons of all possible
subsets of all the observed chemical shifts with those contained in an apposite database,
built with literature of 13C NMR spectroscopic data regarding those groups). The chemical
shifts due to the skeletal carbons from the initial dataset, is then used as input into the expert
system SISTEMAT, for skeletal identification.

Similarly, a practical use for the current work may be realized by creating a database of 13C
NMR spectroscopic data of skeletons of several classes of natural products and developing
a program which can identify the 13C NMR data due to the skeleton of an unknown
compound (by comparison of the raw 13C NMR data of the compound with those contained
in the database). The output (13C NMR data of the skeleton of the unknown) can be fed as
input into the Generalized Regression Neural Network (GRNN) for prediction of the
substituents and their positions on the skeleton. This would further simplify the process of
structural elucidation of organic compounds.

4. CONCLUSION

Neural networks learn from examples and acquire their ‘knowledge’ by induction. They can
generalize, provide flexible non-linear models of input/output relationships can cope with
noisy data and are fault-tolerant [19]. From this study, it could be seen that the predictions
obtained using the GRNN were in good agreement with the actual substituents on the
skeletons of the test compounds. Where the skeleton type of a natural product has been
ascertained by sequential comparison of unknown target spectrum with a set of library
spectra or using ANNs, GRNN could be an excellent complimentary tool to use in predicting
the nature of substituents attached to myrcane skeletons.
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