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Abstract 
By using fluid dynamics theory with the effects of adsorption and reaction, the chromatography 
model with a reaction A → B was established as a system of two hyperbolic partial differential eq-
uations (PDE’s). In some practical situations, the reaction chromatography model was simplified a 
semi-coupled system of two linear hyperbolic PDE’s. In which, the reactant concentration wave 
model was the initial-boundary value problem of a self-closed hyperbolic PDE, while the resultant 
concentration wave model was the initial-boundary value problem of hyperbolic PDE coupling 
reactant concentration. The general explicit expressions for the concentration wave of the reac-
tants and resultants were derived by Laplace transform. The δ-pulse and wide pulse injections 
were taken as the examples to discuss detailedly, and then the stability analysis between the re-
sultant solutions of the two modes of pulse injection was further discussed. It was significant for 
further analysis of chromatography, optimizing chromatographic separation, determining the 
physical and chemical characters. 
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1. Introduction 
With the appearance of diverse production chromatography (such as the reaction chromatography), the chromato- 
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graphy technology has been widely applied in chemistry, chemical engineering, biological engineering and 
pharmaceutical engineering, etc., while the demand of chromatography theory is increasing higher. The relation- 
ships among the chromatographic input-output and the system conditions play the very important role in 
chromatography model [1]-[6]. 

In fact, the mathematical model of chromatography system is a initial-boundary value problem of hyperbolic 
partial differential equations system [7]-[11], which is hard and challenging mathematics problem to chromato- 
graphy scientists. In the other hand, the practical application and demand for chromatography is also difficult to 
understand deeply by mathematicians. The relative works of partial differential equations in the practical 
chromatography are still not enough. 

If the chromatographic process contains reactions, it is labeled as reaction chromatography. An important 
example is the catalyst for the column packing, accompanied the catalytic [2]-[6] in the adsorption process, and 
the isomerization reaction is the common situation. 

In this paper, a chromatography model with a reaction A B→  was established, which is a initial-boundary 
value problem for the semi-coupled system of two linear hyperbolic partial differential equations. Then the 
general explicit expressions of concentration waves for reactant and resultant were derived using Laplace 
transform. It was significant for further analysis between input and output of chromatography, optimizing 
chromatographic separation, determining the physical and chemical characters. Finally, the δ-pulse and wide 
pulse injections were taken as the examples to discuss detailedly, and then the stability analysis between the 
resultant solutions of the two modes of pulse injection was further discussed. The results provided proper theory 
models for further chromatographic data analysis. 

2. Reaction Chromatography Model  
Set the concentrations of the reactant A and the resultant B in the mobile phase and in the stationary phase as 

1 2 1 2, , ,c c f f  respectively. Reaction rate was rk . And the linear velocity of the mobile phase was u. The volume 
shares in chromatographic column in the mobile phase and in the stationary phase as ,ε µ , respectively.  

Denoted that F µ
ε

= , then the mass conservation equations between reactant and resultant in the catalytic  

chromatographic process was shown as below:  

1 1 1
1

2 2 2
1,

r

r

c f cF u k Ff
t t x
c f cF u k Ff
t t x

∂ ∂ ∂ + + = − ∂ ∂ ∂
∂ ∂ ∂ + + =
 ∂ ∂ ∂

                                    (1) 

where, 1rk f−  was the reactant reduction rate, and 1rk f  was resultant increase rate, rk  was the coefficient of 
reaction rate. According to Langmuir type adsorption isotherms, ( )1 1 2,f c c  and ( )2 1 2,f c c  satisfied for:  

( )

( )

1 1
1 1 2

1 1 2 2

2 2
2 1 2

1 1 2 2

,
1

, .
1

G cf c c
b c b c

G cf c c
b c b c

 = + +

 =
 + +

                                    (2) 

The concentration wave Equation (1) were a system of two nonlinear hyperbolic partial differential equations, 
which was a hard mathematical problem. But in some practical situations, the problem can be simplified [2]. 
Assume 1c  was small, or the adsorption coefficient 1b  was small, that was, 1 1 1b c  . While considering the 
assumed reaction rate rk  is relatively minor, then 2c  was also small, that was, 2 1c  , 2 2 1b c  . In fact, in 
the quantitative analysis using high performance liquid chromatography (HPLC), the concentrations of most 
analytes, such as the reactant A and the resultant B here, were all very small [2] [3]. Thus the adsorption 
isotherm above can be approximated as a linear and regarded as follows:  

1 1 1 2 2 2,     f G c f G c                                        (3) 

and denoted concretely:  

1 2 1
1 2

1 1, , ,rFG FG k FG
u u u

λ λ α+ +
= = =                             (4) 
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they were positive constant, thus Equation (1) can be simplified to the following semi-coupled system of two 
linear hyperbolic partial differential equations. In which, the reactant concentration wave model was the initial- 
boundary value problem of a self-closed hyperbolic partial differential equations, while the resultant con- 
centration wave model was the initial boundary value problem of hyperbolic partial differential equations 
coupling reactant concentration.  

1 1
1 1

2 2
2 1

,

.

c c c
x t
c c c
x t

λ α

λ α

∂ ∂ + = − ∂ ∂
∂ ∂ + =
 ∂ ∂

                                   (5) 

Chromatographic process started from the boundary, and there were many types of the boundary conditions, 
such as the injection methods of δ-pulse, wide pulse, head-on, etc.; whose corresponding boundary condition 
were not zero. The initial state of chromatography columns were typically empty, that the initial conditions 
corresponding to 0. However, in practical problems, there were some important chromatograph whose corre- 
sponding initial conditions is not zero, such as simulated moving bed chromatography. Therefore, it is necessary 
to study the general initial-boundary value problem with both the initial and boundary values were not 0. That 
was, 1 2,c c  satisfied the following the general initial-boundary value problems.  

( ) ( )
( ) ( )

1 1
1 1

1 1

1 1

, 0 ,    0
0, ,     0 ,

I

B

c c c
x t

c x c x x
c t c t t

λ α∂ ∂ + = − ∂ ∂
= < < +∞

 = < < +∞


                              (6) 

( ) ( )
( ) ( )

2 2
2 1

2 2

2 2

, 0 ,    0
0, ,     0 ,

I

B

c c c
x t

c x c x x
c t c t t

λ α∂ ∂ + = ∂ ∂
= < < +∞

 = < < +∞


                              (7) 

where, 1 2, ,λ λ α  were constants, ( ) ( ), , 1, 2I B
i ic x c t i =  were positive piecewise and continuous smooth 

functions, and meet the compatibility condition, ( ) ( )0 0 , 1, 2I B
i ic c i= = . 

3. Explicit Solution of Concentration Wave  
Firstly, solved the initial-boundary value problem (6) for concentration wave of of reactant 1c . According to 
Laplace transform of t, noted that:  

( )  ( )1 1, , ,L c x t c x p=    

it follows from (6) that  


( ) 

 ( )  ( )

1
1 1 1 1

1 1

d
d

0, .

I

B

c p c c
x

c p c p

λ α λ


= − + +

 =

                               (8) 

Then solved the ordinary differential Equation (8) about  ( )1 ,c x p , we got:  

 ( ) ( ) ( )( ) ( )  ( )1 1
1 1 1 10

, e d e ,
x p x p xI Bc x p c c pλ α η λ αλ η η+ − − += +∫  

and  

( ) ( )  ( ) ( ) ( )( )1 11 1
1 1 1 10

, e e d .
xp x p xB Ic x t L c p L cλ α λ α ηλ η η− + + −− −   = +     ∫  

Since  
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( )  ( ) ( )

( )

11 1
1 1 1

1 1 1

1

e e

e ,
0, ,

p x B x B

x B

L c p L L c t x

c t x t x
t x

λ α α

α

λ

λ λ
λ

− +− − −

−

    = −   
 − ≥= 

<

                       (9) 

( ) ( )( )

( ) ( )( ) ( )

( ) ( ) ( ) ( )
( )

1

1

1
1 10

1
1 1 1 10

1 1 1 10

1

e d

d e

e d , 0

0, 0,

x p xI

x p xI x B

x xI

L c

c e L L c t x

c t x t x

t x

λ α η

λ α η α

α η

λ η η

λ η η λ

λ η δ η λ η η λ

η λ

+ −−

+ − − −

−

 
  

  = = −  
 − − − − ≥   = 

− − <

∫

∫

∫

 

and  

( ) ( ) ( )

( ) ( )

1

1 1 10

1
1 1

10
1

1

e d

e , 0
e d

0, 0.

x xI

t
I

x xI

c t x

t tc x x
tc x

tx

α η

α
λ

α η

λ η δ η λ η

λ λη δ η η
λ

λ

−

−
−

−

− −  

  
− − ≥       = − − =   

    − <

∫

∫
 

That is to say,  

( ) ( )( )
1

11 1 1
1 1 10

1

e ,
e d

0, .

t
I

x p xI
tc x t x

L c

t x

α
λ

λ α η λ
λ η η λ

λ

−
−

+ −−

  
− ≤    =       >

∫                   (10) 

To sum (9) and (10) up,  

( )
( )

1

1 1 1

1
1 1

1

e ,
,

e , 0 .

x B

t
I

c t x t x
c x t tc x t x

α

α
λ

λ λ

λ
λ

−

−
−

 − >


=   
− < ≤ 

 

                         (11) 

Then solved the initial-boundary value problem (7) for the concentration wave of resultant 2c . Similarly, 
according to Laplace transform of t, noted that:  

( )  ( )2 2, , .L c x t c x p=    

The above problem (7) satisfied the following ordinary differential equation:  


 ( ) ( ) 

 ( )  ( )

2
2 1 2 2 1

2 2

d ,
d

0, .

I

B

c p c x p c x c
x

c p c p

λ λ α


= − + +

 =

                           (12) 

Solved the ordinary differential Equation (12) about  ( )2 ,c x p , we got:  
 ( ) ( ) ( ) ( )  ( )2 2

2 2 2 1 20
, e e .

x p x p xI Bc x p c c d c pλ η λλ η α η− − −= + +∫  

Hence, we got  

( )  ( ) ( ) ( ) ( )221 1
2 2 2 2 10

, e e d .
x p xp x B Ic x t L c p L c c λ ηλ λ η α η−−− −   = + +    ∫  

Since  

 ( ) ( ) ( )21 1 2 2 2
2 2 2

2

,
e

0, ,

B
p x B B c t x t x

L c p L L c t x
t x

λ λ λ
λ

λ
−− −  − ≥    = − =     <

              (13) 
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and  

( ) ( ) ( )

( ) ( )


( )

2

2 2

1
2 2 10

1 1
2 2 10 0

e d

e d e d ,

x p xI

x xp x p xI

L c c

L c L c

λ η

λ η λ η

λ η α η

λ η η α η

−−

− − − −− −

 +  
   = +      

∫

∫ ∫
 

( ) ( ) ( ) ( )

( ) ( )

2 21 1
2 2 2 20 0

2 2 20
2

2

e d e d

d ,

0, ,

x xp x p xI I

x I

L c c L

tc t x x

tx

λ η λ ηλ η η λ η η

λ η δ η λ η η
λ

η
λ

− − − −− −   =    

 − − ≥ −  
= 
 < −

∫ ∫

∫  

where  

( ) ( ) ( )2 2 2 20 0
2

2 2
2

2

d d

, 0

0, .

x xI I

I

tc t x c x

tc x t x

t x

λ η δ η λ η η δ η η
λ

λ
λ

λ

  
− − = − −     

   

  
− < ≤  

=   
 >

∫ ∫

                 (14) 

Meanwhile, we had  

( ) ( )( )

( )( ) ( )
( )

21 1
1 1 20 0

1 2 20

2

e d , d

, d , 0

0, 0,

x xp x

x

L c L L c t x

c t x t x

t x

λ ηα η α η λ η η

α η λ η η λ η

λ η

− −− −    = − −       

 − − − − ≥= 
 − − <

∫ ∫

∫



 

and  

( )( )
( )( )

( )( )
2

1 2
2

1 20

1 20
2

, d , 0
, d

, d , 0.

x
txx

x

tc t x x
c t x

tc t x x

λ

α η λ η η
λ

α η λ η η
α η λ η η

λ

−

 − − − ≥− − = 
 − − − <


∫
∫

∫
             (15) 

To sum (13), (14) and (15) up,  

( )
( )( )

( ) ( )( )
2

2 1 2 2
22

2 2 1 2 20

, d , 0
,

, d , .

xI
tx

xB

tc x c t x t x
c x t

c t x c t x t x

λ

α η λ η η λ
λ

λ α η λ η η λ

−

  
− + − − < <    = 

 − + − − ≥

∫

∫
               (16) 

Using the expression (11) of 1c  and the relation Equation (16) of 1c  and 2c , the explicit solution ex- 
pressions of 2c  were derived by dividing into the following three cases. 

In the case of 1 2λ λ= , we got  

( )
( ) ( ) ( )

2
2 1 2

2 22

2 2 1 2 2

1 e , 0
,

1 e , .

t
I I

B B x

t tc x c x t x
c x t

c t x c t x t x

α
λ

α

λ
λ λ

λ λ λ

−

−

     
  − + − − < <     =      


− + − − ≥

                  (17) 

In the case of 1 2λ λ> , set ( )2 1 2y t xλ λ λ η= − − − , then we had  
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( )

( )

( )

( )

( )

( )
( )

( )

( )

2
21 2

1 1 2

2

2

1 2
2 1 2

2
21 2

1 1 2

2

1
2 1 2

2 1 2

2 2 10
1 2

2

1
1 2 1

1 2

2 2

e e d , 0

e e d
,

e d ,

e

t x
ytx

I I
tx

t x
y

t xB B

t x
ytx

I
tx

B

tc x c y y t x

c t x c y y
c x t

e c y y x t x

c t x

α λ
αλλ λ

λ λ λ

λ
α λ

αλ λ
λ λ λ

α λ
αλλ λ

λ λ λ

λ

αλ
λ

λ λ λ

αλ
λ λ

αλ
λ λ

λ λ

αλ

−
− −− − −

−

−

−
−

−
− −

−
− −− − −

−

−

 
− + < ≤  − 

− +
−

=

+ < ≤
−

− +

∫

∫

∫
( )

( )
2

1 2
2 1 2

1
1 1

1 2

e d , .

t x
y

t x B
t x

c y y t x

α λ
αλ λ

λ λ λ
λ

λ
λ λ

−
−

−
− −

−

















≥ −
∫

            (18) 

In the case of 1 2λ λ< , we had ( )2 1 2y t xλ λ λ η= − − − , then we got  

( )

( )

( )
( )

( )
( )

( )

( )

2
21 2

1 1 2

2

2

1 2
1 1 2

2
21 2

1 22

1
2 1 1

2 1 2

2 10
2 1 2

2

1
1 1 20

1 2

2 2

e e d , 0

e e
,

e d ,

t x
ytx

I I
tx

t x
y

t xI B

t x
ytx I

B

tc x c y y t x

tc x c y dy
c x t

e c y y x t x

c t x

α λ
αλλ λ

λ λ λ

λ
α λ

αλ λ
λ λ λ

α λ
αλλ λ
λ λλ

αλ
λ

λ λ λ

α
λ λ λ

αλ
λ λ

λ λ

λ

−
− −− − −

−

−

−
−

−
− −

−
− −− −− −

 
− + < ≤  − 

 
− −  − =

− < ≤
−

− +

∫

∫

∫
( )

( )
2

1 2
2 1 2

1
1 2

1 2

e e d , .

t x
y

t x B
t x

c y y t x

α λ
αλ λ

λ λ λ
λ

α λ
λ λ

−
−

−
− −

−















 ≥ −

∫

            (19) 

Particularly, when the initial-boundary problem (6) and (7) satisfied the following conditions  

( ) ( ) ( )1 2 2, 0 ,0 0, 0c x c x c t= = =  

the explicit solution of reactant and resultant concentration wave 1 2,c c  were obtained as follows. 
Following (11), we had  

( ) ( )1 1 1
1

1

e ,
,

0, 0 .

x Bc t x t x
c x t

t x

α λ λ
λ

− − >= 
< ≤

                          (20) 

According to the expressions (17), (18) and (19), we had the explicit solution expressions of 2c  as follows. 
When 1 2λ λ=   

( ) ( ) ( )
2

2
1 2 2

0, 0
,

1 e , .B x

t x
c x t

c t x t xα

λ

λ λ−

< <=  − − ≥
                       (21) 

When 1 2λ λ>   

( )

( )

( )
( )

( )

2

1 2
2 1 2

2

1 2
2 1 2

1

2

2 1 2 10
1 2

1 1
1 2

0, 0

e, e d ,

e e d , .

t x
y

t x B

t x
y

t x B
t x

t x

c x t c y y x t x

c y y t x

α λ
αλ λ

λ λ λ

α λ
αλ λ

λ λ λ
λ

λ

α λ λ
λ λ

α λ
λ λ

−
−

−
− −

−
−

−
− −

−


 < ≤



= < ≤
−




≥
−

∫

∫

                   (22) 
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When 1 2λ λ<   

( )

( )

( )

( )

( )

2

1 2
1 1 2

2

1 2
2 1 2

1

1

2 1 1 20
1 2

1 2
1 2

0, 0

e, e d ,

e e d , .

t x
y

t x B

t x
y

t x B
t x

t x

c x t c y y x t x

c y y t x

α λ
αλ λ λ λ λ

α λ
αλ λ λ λ λ

λ

λ

α λ λ
λ λ

α λ
λ λ

−
−

−
− −

−
−

−
− −

−


 < ≤

= − < ≤ −


 ≥

−

∫

∫

                  (23) 

4. Solutions and Stability for δ-Pulse and Wide Pulse Injections  
In this section, we derived the solutions of reactant and resultant concentration waves in wide pulse and δ-pulse 
injections detailedly. And the stability analysis between the resultant solutions of the two modes of pulse 
injection was further discussed. 

4.1. δ-Pulse Injection  
Chromatographic process started from the boundary, and there were many types of the boundary conditions, 
such as the methods of δ-pulse, wide pulse, head-on, etc; whose corresponding boundary condition was not zero. 
Where, δ-pulse and wide pulse were the most common way of chromatography injection method. Firstly, initial 
state of chromatography column in the δ-pulse method, which injection function was a kind of δ-function, was 
typically empty. So in the case of δ-Pulse, 1c  satisfied the following initial-boundary problem.  

( )
( ) ( )

1 1
1 1

1

1

, 0 0,    0

0, ,     0 ,

c c c
x t

c x x

c t k t t

λ α

δ

∂ ∂ + = − ∂ ∂
 = < < +∞
 = < < +∞

                              (24) 

where k is a constant represented the injection size, which is equal to 10 pc t  in wide pulse method in Section 4.2. 
According to the behavior of the δ-function, we had  

( )
0

d 1,t tδ
∞

=∫  

( ) ( )10 0
0, d d .c t t k t t kδ

∞ ∞
= =∫ ∫  

The solution of concentration wave for reactant was obtained by Laplace transform as similar with Section 3. 
The concentration wave corresponding to δ-pulse injection of reactant and resultant can be expressed as follows.  

( ) ( )1 1
1

1

e ,
,

0, .

xk t x t x
c x t

t x

α δ λ λ
λ

− − ≥= 
<

                           (25) 

If there was no reaction terms, that was, 0α = , we got  

( ) ( )1 1
1

1

,
,

0, .
k t x t x

c x t
t x

δ λ λ
λ

− ≥
= 

<
                             (26) 

As for the solution of concentration wave for resultant, the initial and boundary values were both 0. From the 
expression (21), (22) and (23), we had the explicit solution expressions of 2c . 

When 1 2λ λ=   

( ) ( ) ( )
2

2
2 2

0, 0
,

1 e , .x

t x
c x t

k t x t xα

λ

δ λ λ−

< <=  − − ≥
                      (27) 

It was equivalent to ( )2 , 0.c x t =  
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When 1 2λ λ>   
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                       (28) 

When 1 2λ λ<   
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1 2
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2 1 2
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                       (29) 

4.2. Wide Pulse Injection  
Wide pulse was the another most common way of chromatography injection method, its initial state of chromato- 
graphy column was typically empty, so the initial condition was the follows,  

( ) ( )1 20,    0.I Ic x c x≡ ≡  

The corresponding injection function was given as follows,  

( ) ( )10
1 2

, 0
    0.

0, ,
pB B

p

c t t
c t c x

t t
< ≤= ≡ <

                          (30) 

where, pt  was the injection time, 10c  was the injection rate, both of them are constant. In this paper, Wide 
pulse was taken as an another example, the solution of concentration wave for reactant and resultant were 
derived detailedly. 

Similarly, we had the explicit solution expressions of 1c  and 2c  as follows,  

( )
1

1 10 1 1
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0,
, e , ,
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x
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p
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                         (31) 

When 1 2λ λ= ,  
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                       (32) 

When 1 2λ λ> , we got,  
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When 1 2λ λ< ,  
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              (34) 

4.3. Stability Analysis between Wide Pulse and δ-Pulse Injections  
Note that, the boundary condition in wide pulse injection tended to the condition in δ-pulse injection. We also 
showed that the mentioned limit relationship was still valid for the solutions in the two modes of pulse injection. 
The main result of this work is the following theorem:  

Theorem 1. If 100,pt c→ →∞  and 10pt c k→ , the solution of concentration wave for resultant in wide 
pulse injection converges to the resultant solution in δ-pulse injection.  

Proof. 1) When 1 2λ λ= , from (32), For any fixed 0x , when ( ]2 00,t xλ∈ , we had  

( )2 , 0,c x t =  

and when ( )2 0 ,t xλ∈ ∞ , pt∃  (a sufficiently small constant), so that 2 0pt x tλ+ < , and  

( )2 0 , , 0.pc x t t =  

By arbitrariness of 0x , we obtained  

( )
10
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20
lim , , 0,

p

p

pt
c
t c B

c x t t
→
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→

=                                  (35) 

which was converging to the solution (27) in δ-pulse injection.  
2) When 1 2λ λ> , the resultant solution (33) in wide pulse injection can be expressed as follows. 

In the case of 
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                 (36) 

In the case of 
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λ λ
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−
,  
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                     (37) 

For any fixed 0x , pt∃  (a sufficiently small constant), so that 0
1 2

pt
x

λ λ
>

−
. Then expressions (37) can be  

noted to:  
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Furthermore, for any fixed 0t , 
a) When ( ]2 00,t xλ∈ , we had  

( )2 0, , 0.pc x t t =  

b) When ( ]2 0 1 0,t x xλ λ∈ , pt∃  (a sufficiently small constant), 2 0 1 0pt x t xλ λ+ < ≤ , we got  
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c) When ( ]1 0 ,t xλ∈ ∞ , pt∃  (a sufficiently small constant), 1 0 0pt x tλ+ < , we had  
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To sum up,  
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3) When 1 2λ λ< , the solution in wide pulse method (34) was equivalent to the following. 
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For any fixed 0x , pt∃  (a sufficiently small constant), so that 0
2 1
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x

λ λ
>

−
. Then expression (41) can be  

noted to:  
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and for any 0t , 
i) When ( ]1 00,t xλ∈ , we had  

( )2 0, , 0.pc x t t =  

ii) When ( ]1 0 2 0,t x xλ λ∈ , pt∃  (a sufficiently small constant), 1 0 2 0pt x t xλ λ+ < ≤ , we had  
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iii) When ( ]2 0 ,t xλ∈ ∞ , pt∃  (a sufficiently small constant), 2 0 0pt x tλ+ < , we had  
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By arbitrariness of 0x  and 0t , we obtained  
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                   (43) 

By (35), (39) and (43), we can conclude that this Theorem is true.                                 □ 

5. Conclusion  
The chromatography model with a reaction A B→  was established and can be simplified a semi-coupled 
system of two linear hyperbolic PDE's in some practical situations. In which, the reactant concentration wave 
model was the initial-boundary value problem of a self-closed hyperbolic PDE, while the resultant concentration 
wave model was the initial-boundary value problem of hyperbolic PDE coupling reactant concentration. The 
general explicit expressions for the concentration wave of the reactants and resultants were derived by Laplace 
transform. The δ-pulse and wide pulse injections were taken as the examples to discuss detailedly, and it was 
proved that the continuous dependence of solutions was in accordance with the dependence under corresponding 
boundary conditions. It was significant for further analysis of chromatography in nonlinear case, optimizing 
chromatographic separation, determining the physical and chemical characters. 
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