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Value of incorporating geospatial information into the prediction of on-street 
parking occupancy – A case study
Michael Balmer a, Robert Weibel a and Haosheng Huang b

aDepartment of Geography, University of Zurich, Zurich, Switzerland; bDepartment of Geography, Ghent University, Ghent, Belgium

ABSTRACT
In light of growing urban traffic, car parking becomes increasingly critical for cities to manage. 
As a result, the prediction of parking occupancy has sparked significant research interest in 
recent years. While many external data sources have been considered in the prediction models, 
the underlying geographic context has mostly been ignored. Thus, in order to study the 
contribution of geospatial information to parking occupancy prediction models, road network 
centrality, land use, and Point of Interest (POI) data were incorporated in Random Forest (RF) 
and Artificial Neural Network (ANN, specifically Feedforward Neural Network FFNN) prediction 
models in this work. Model performances were compared to a baseline, which only considers 
historical and temporal input data. Moreover, the influence of the amount of training data, the 
prediction horizon, and the spatial variation of the prediction were explored. The results show 
that the inclusion of geospatial information led to a performance improvement of up to 25% 
compared to the baseline. Besides, as the prediction horizon expanded, predictions became 
less reliable, while the relevance of geospatial data increased. In general, land use and POI data 
proved to be more beneficial than road network centrality. The amount of training data did not 
have a significant influence on the performance of the RF model. The ANN model, conversely, 
achieved optimal results on a training input of 5 days. Likely attributable to varying occupancy 
patterns, prediction performance disparities could be identified for different parking districts 
and street segments. Generally, the RF model outperformed the ANN model on all predictions.
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1. Introduction

Finding a free parking space in urban areas can be 
a very challenging task. On average, parking search 
traffic, that is, vehicles roaming around looking for 
free parking spaces, amounts to as much as 30% of 
total traffic in certain urban areas (Zhang and Haghani 
2015). As a result, it has far-reaching socio-economic 
and environmental consequences. A significant 
amount of fuel is wasted and an increased number of 
traffic accidents are linked to the search for parking 
spaces (Bush and Chavis 2017).

A potential solution to help mitigating parking 
search is the provision of parking- related data, e.g. 
by deploying intelligent sensors in parking lots. 
Ideally, this information can be transmitted to drivers’ 
navigation systems in search of a parking space in the 
form of dynamic parking maps (Zheng, Rajasegarar, 
and Leckie 2015; Bock 2018; Huang et al. 2018; Sester 
2020). In order to develop more adaptive traffic man
agement and traveler information systems, the predic
tion of parking occupancy has received significant 
attention in recent years (Ermagun and Levinson 
2018). In such a way, drivers can plan their trips 
ahead of time, allowing them to customize the desti
nation and departure time. Once close to the destina

tion, drivers can then be guided directly to a vacant 
parking space.

To make the prediction results more reliable, var
ious external sources of information, in addition to 
historical parking occupancy data, have been incorpo
rated in parking occupancy prediction models. Some 
examples of these external sources include temporal 
information (e.g. time of the day, day of the week), 
weather, and traffic information (e.g. Arjona et al. 
2020; Awan et al. 2020; Camero et al. 2019; Xiao, 
Lou, and Frisby 2018). However, the underlying geo
graphic context of the target area has not received due 
attention. Given that the geospatial characteristics of 
an urban environment largely influence how drivers 
behave in it, integrating these geospatial components 
into the prediction models can potentially contribute 
to the improvement of the predictive performance, as 
shown in a number of studies (Lu and Liao 2020; Bock 
2018; Leu and Zhu 2015). Nevertheless, these existing 
studies only focused on the occupancy status of adja
cent roads, neighboring garages, or parking lots. The 
explicit inclusion of geospatial information such as 
land use, Points of Interest (POIs), and the spatial 
configuration of the street network has, to the best of 
our knowledge, not been realized and assessed.
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In recognizing the above research gap, this work aims 
to assess the contribution of geospatial information to 
parking occupancy prediction, via a case study in the city 
center of San Francisco. We focus on the prediction of 
on-street parking occupancy, which is more challenging 
than the occupancy prediction of off-street parking facil
ities (e.g. parking lots or garages) due to the significant 
changes of the occupancy rates of parking street seg
ments. Specifically, the following overall Research 
Question (RQ), and its four sub-RQs are addressed:

Overall RQ: To what extent does geospatial informa
tion help improving the performance of on-street 
parking occupancy prediction models?

Sub-RQ1: How do results change under varying 
amounts of training data?

Sub-RQ2: How do results change under different tem
poral prediction horizons (i.e. how far ahead the mod
els predict the future)?

Sub-RQ3: How do predictions vary spatially?

Sub-RQ4: How is the predictive performance influ
enced by the choice of machine learning algorithms?

2. Related work

2.1. Parking occupancy prediction

In the literature, parking occupancy prediction has been 
defined as the estimation of occupancy for a specific 
parking facility at a given time in the future based on 
parking-related information (e.g. Zheng, Rajasegarar, 
and Leckie 2015; Li, Li, and Zhang 2018; Bock 2018). 
Initial studies focused mainly on the occupancy predic
tion of off-street parking facilities, such as garages and 
parking lots. This is due to the fact that they are ubiqui
tous in many cities, the problem is simpler, and parking 
data are more accessible (Monteiro and Ioannou 2018). 
In recent years, however, the focus has increasingly 
shifted to on-street parking prediction, which is more 
challenging, due to the absence of lot entrances and 
significant changes of the occupancy rate of a parking 
street segment following more frequent parking/leaving 
events (Bock 2018). In terms of the prediction horizon 
(i.e. how far ahead a model predicts the future), most of 
the existing studies focused on short-term (less than 1 h) 
and medium-term (less than 12 h) prediction (e.g. Ji et al. 
2015; Klappenecker, Lee, and Welch 2014; Li, Li, and 
Zhang 2018).

2.2. Parking algorithms

With regard to parking occupancy prediction algo
rithms, three general approaches can be identified in 
the literature (Xiao, Lou, and Frisby 2018; Mei et al. 

2019). The following section summarizes these three 
classes of prediction algorithms. For a concise over
view of existing algorithms, please refer to Table 1 
(columns “Method” and “Employed Algorithm(s)”).

2.2.1. Model-based approach
The model-based approach involves the establishment 
of an underlying model for the parking process, where 
model parameters are estimated to make parking 
occupancy predictions. Stochastic arrival and depar
ture processes are usually explicitly employed for this 
approach. Mostly applied to off-street parking facil
ities, it is based on the assumption that vehicles arrive 
at parking spaces following a Poisson distribution. 
A number of studies (Atif et al. 2020; Caliskan et al. 
2007; Klappenecker, Lee, and Welch 2014; Peng and Li 
2016; Wu et al. 2014) made parking occupancy pre
dictions using a continuous-time Markov Chain. Lu 
et al. (2009) used advanced technologies for the provi
sion of arrival and departure rates, whereas Caicedo, 
Blazquez, and Miranda (2012) made parking availabil
ity predictions based on request allocations.

2.2.2. Parametric statistical approach
Statistical time series methods have been a popular 
approach for making predictions in transportation pro
blems (Karlaftis and Vlahogianni 2011). In this approach, 
the evolution of a system is considered, with historical 
observations indexed by time. Implementations using 
Auto Regressive Integrated Moving Average (ARIMA) 
models for parking occupancy prediction have been 
abundant in the literature. Dias, Bellalta, and Oechsner 
(2015) suggested an ARIMA prediction approach for 
occupancy status of public bicycle stations in Barcelona, 
Spain. Similarly, Badii, Nesi, and Paoli (2018) found that 
an ARIMA model can make satisfactory predictions, on 
condition that the training was recomputed every hour. 
Yu et al. (2015) established an ARIMA model to forecast 
the remaining spaces of a central mall parking lot in real- 
time by constantly updating the data. Time series analy
sis, model parameter estimation, and model adaptive 
testing were carried out to establish the model.

2.2.3. Non-parametric machine learning approach
Several Machine Learning (ML) algorithms have also 
been applied to predict parking occupancy. Amongst 
them, the implementation of Artificial Neural 
Networks (ANNs) have been particularly popular as 
a means to establish parking occupancy prediction 
models. Feedforward Neural Networks (FFNNs), the 
simplest type of ANN models, have been advocated to 
make parking availability predictions. Yu et al. (2015) 
and Pengzi et al. (2017) used this type of model to 
make short-term predictions with time and recent 
parking occupancy observations for parking occu
pancy. In a similar manner, Zheng, Rajasegarar, and 
Leckie (2015) made parking occupancy predictions 

GEO-SPATIAL INFORMATION SCIENCE 439



with longer prediction horizons. Recurrent Neural 
Networks (RNNs), more complex ANNs with loops, 
have been proposed in parking occupancy prediction 
schemes due to their strength in solving problems that 
are sequential and time-varying (Qolomany et al. 
2017). Camero et al. (2019) implemented a short- 
term RNN for the occupancy prediction of several 
car parks in Birmingham. Similarly, Vlahogianni 
et al. (2016) suggested a real-time time series occu
pancy scheme based on RNNs. Further, the usage of 
Long Short-Term Memory (LSTM) networks, an 
extension of a traditional RNN, was proposed in the 
literature (Arjona et al. 2020; Li, Li, and Zhang 2018; 
Shao et al. 2019; Sun et al. 2018).

Ensemble methods have also been implemented 
for parking occupancy prediction. Koumetio 
Tekouabou et al. (2020) used bagging, boosting, and 
Random Forests (RF) in their prediction model. 
Emphasizing their robustness and competitiveness, 
Bock (2018) employed an RF model to predict occu
pancy status of parking segments from crowdsensed 

data. Dias, Bellalta, and Oechsner (2015), conversely, 
used an RF model to make long-term occupancy 
predictions for a public bicycle sharing programme 
in Barcelona.

In addition, regression models have been proposed 
in the literature. Using support-vector regression, Leu 
and Zhu (2015) predicted the number of available 
parking spaces for bicycle stations in Taipei, China. 
Similarly, Zheng, Rajasegarar, and Leckie (2015), 
Badii, Nesi, and Paoli (2018), and Chen (2014) carried 
out prediction schemes for on-street and off-street 
parking in various cities.

2.3. Input data employed in the existing 
prediction model

In the following, we summarize the types of input data 
that have been used in the existing studies on parking 
occupancy prediction. For an overview, please refer to 
Table 1 (column “Data input”).

Table 1. Summary of the literature on parking occupancy prediction (cf. Section 2.2).
Method

Study MB ST ML Employed algorithm(s) Data input Prediction horizon horizon Step (min)

Arjona et al. (2020) X LSTM T,D,H,R,W medium 60
Atif et al. (2020) X Markov Chain T,D,R short 5
Awan et al. (2020) X DT, FFNN, KNN, RF T,D,R short 1
Di Martino and Origlia (2020) X X Clustering, Mean, SVR T,D,R short 5
Koumetio Tekouabou et al. (2020) X Bagging, Boosting, KNN, RF T,D medium 15
Lu and Liao (2020) X X DT, Naive Bayes, Regression, RF T,D,R,L,W medium 60
Zhang et al. (2020) X RNN, RF T,R,L short 15
Camero et al. (2019) X RNN T,D,R medium 30
Mei et al. (2019) X SVR T,D,R long 5,15,30
Shao et al. (2019) X LSTM T,R short 1
Stolfi, Alba, and Yao (2020) X X Fourier series, K-means, Regression T,D,R medium 15–30
Badii, Nesi, and Paoli (2018) X X ARIMA, BRANN, RNN, SVR T,D,R,TR,W long 15
Bock (2018) X RF T,D,R,L short 5
Fan, Hu, and Tang (2018) X SVR T,D,R medium 10
Fang et al. (2018) X X Markov Chain, WNN T,R long 15
Li, Li, and Zhang (2018) X LSTM T,D,H,R,E,W medium 3
Liu et al. (2018) X Autoregression T,D,R medium 5
Monteiro and Ioannou (2018) X X Mean, Poisson, Variance T,D,TR medium 5
Sun et al. (2018) X LSTM T,R short 2
Xiao, Lou, and Frisby (2018) X Markov Chain T,D,E short 2
Pengzi et al. (2017) X FFNN T,R short 1
Stolfi, Alba, and Yao (2017) X X Fourier series, K-means, Regression T,D,R medium 30
Peng and Li (2016) X Markov Chain T,D medium 20
Pflügler et al. (2016) X FFNN T,D,H,E,TR,W short
Vlahogianni et al. (2016) X RNN T,D,R short 1
Dias et al. (2015) X X ARIMA, RF T,D,H,W long 15
Ji et al. (2015) X WNN T,D,R short 5
Leu and Zhu (2015) X X Regression, SVR T,L,W short 1
Rajabioun and Ioannou (2015) X Autoregression T,D,R,L,TR short 1
Tiedemann et al. (2015) X Clustering T,D,H,R medium 15
Yu et al. (2015) X X ARIMA, FFNN T,R short 15
Zheng, Rajasegarar, and Leckie (2015) X FFNN, RT, SVR T,D,R medium 15
Chen (2014) X X ARIMA, FFNN, Regression, SVR T,D,R,E medium 60
Hössinger et al. (2014) X Mean T,D,H,L medium 30
Klappenecker, Lee, and Welch (2014) X Markov Chain T short 1
Richter, Martino, and Mattfeld (2014) X Mean T,D,L long 5
Wu et al. (2014) X Markov Chain T,D,R medium 5
Rajabioun, Foster, and Ioannou (2013) X Poisson T,R medium 5
Caliskan et al. (2007) X Markov Chain T medium 1

MB: Model-based; ST: Statistical; ML: Machine Learning; ARIMA: Auto Regressive Integrated Moving Average; BRANN: Bayesian Regularized Artificial Neural 
Network; FFNN: Feed Forward Neural Network; KNN: K-Nearest Neighbors; DT: Decision Tree; LSTM: Long Short-Term Memory; RF: Random Forest; RT: 
Regression Tree; SVR: Support Vector Regression; WNN: Wavelet Neural Network; T: TOD; D: DOW; H: Holidays; R: Recent occupancy observations; L: 
Location; E: Events TR: Traffic; W: Weather; short: < 1 h; 1 h ≤ medium ≤ 12 h; long: < 12 h.
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2.3.1. Recent observations of parking occupancy 
(i.e. historical parking occupancy data)
Recent parking occupancy observations may be the 
most significant data input for future parking occu
pancy prediction. This stems from the fact that there is 
a strong temporal correlation for parking utilization 
(Rajabioun and Ioannou 2015; Liu et al. 2018). While 
statistical time-series methods such as ARIMA expli
citly rely on the parking occupancy status of previous 
time steps, the previous observations have also been 
implemented as input features in ML models in the 
literature (Bock 2018; Liu et al. 2018; Zheng, 
Rajasegarar, and Leckie 2015).

2.3.2. Temporal information
Due to the fact that the parking utilization rate fol
lows recurrent within-day and day-to-day patterns 
(Chen 2014; Xiao, Lou, and Frisby 2018), temporal 
information such as the Time of the Day (TOD), the 
Day of the Week (DOW), and holidays have been 
implemented in many models to predict parking 
occupancy. The TOD is a very relevant factor to 
consider (e.g. Dias, Bellalta, and Oechsner 2015; 
Zheng, Rajasegarar, and Leckie 2015; Richter, 
Martino, and Mattfeld 2014). It is implemented 
either in a time series (e.g. Vlahogianni et al. 2016; 
Liu et al. 2018) or directly as a feature in ML methods 
(e.g. Pflügler et al. 2016; Zheng, Rajasegarar, and 
Leckie 2015; Badii, Nesi, and Paoli 2018). 
Furthermore, the literature has shown that long- 
term predictions especially benefit from the distinc
tion between DOWs (e.g. Richter, Martino, and 
Mattfeld 2014; Vlahogianni et al. 2016; Rajabioun 
and Ioannou 2015). Drivers’ parking behavior also 
tends to be different on holidays (Li, Li, and Zhang 
2018; Wang et al. 2007).

2.3.3. Weather
Yang, Liu, and Wang (2003) and Greengard (2015) 
argued that weather information is of central impor
tance, affecting the traffic behavior and traffic flow 
intensity. Badii, Nesi, and Paoli (2018) showed that 
weather conditions of 1 h before the parking time have 
a significant impact on the parking behavior. 
Similarly, Dias, Bellalta, and Oechsner (2015) and 
Leu and Zhu (2015) found that the relative humidity 
and extreme weather conditions, respectively, play an 
important role in making occupancy predictions for 
public bicycle sharing systems.

2.3.4. Traffic
Since traffic and parking are closely connected, it 
has also been argued that the inclusion of traffic 
information is advantageous to predict parking 
occupancy. Especially, traffic volume is an 

important factor, as high traffic volume makes it 
more difficult to find a vacant parking space (Shin 
and Jun 2014; Yang, Liu, and Wang 2003; 
Hössinger et al. 2014). Moreover, Badii, Nesi, and 
Paoli (2018) suggested that vehicle flow, concentra
tion, and average speed have high predictive 
relevance.

2.3.5. Location (i.e. geospatial information)
As can be seen from Table 1 (column “Data input”), 
only few existing studies have used geospatial infor
mation in their parking occupancy prediction models. 
Occupancy observations in adjacent roads or garages 
were considered by Lu and Liao (2020) and Bock 
(2018). Similarly, Leu and Zhu (2015), used the occu
pancy status of the target station’s neighboring sta
tions as feature input. Rajabioun and Ioannou (2015) 
pointed out that there is a correlation of parking usage 
between car parks that are at different distances from 
each other. However, beyond these initial studies, 
research on incorporating other types of geospatial 
information is missing.

2.4. Summary and research gap

In short, three types of methods have been proposed 
for parking occupancy prediction, including model- 
based, parametric statistical, and non-parametric ML, 
in which ML methods such as RF and ANN have 
become popular in recent years. Different types of 
input data have been considered, such as historical 
parking occupancy data, temporal information, 
weather, and traffic information. Surprisingly, the 
underlying geospatial context of the target area has 
received little attention. The few studies that consid
ered a spatial component in their prediction model 
only focused on occupancy status of adjacent roads or 
parking lots, based on the assumption that there is 
a spatial correlation. The explicit inclusion of informa
tion such as land use, POIs and the spatial configura
tion of the street network has, to the best of our 
knowledge, not been realized. Hence, its implementa
tion in parking occupancy prediction models poses 
a great potential that has not yet been exploited.

This article thus aims to address the above 
research gap, and investigate the contribution of 
different types of geospatial information to the pre
diction of parking occupancy. We mainly focus on 
two popular ML methods: RF and FFNN, which 
were also shown to have high potential in provid
ing reliable predictions (e.g. Bock 2018; Dias, 
Bellalta, and Oechsner 2015; Zheng, Rajasegarar, 
and Leckie 2015; Awan et al. 2020; Koumetio 
Tekouabou et al. 2020).
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3. Data

3.1. Parking occupancy data

The historical parking occupancy data used in this 
study are provided by the San Francisco Municipal 
Transportation Agency as part of SFpark, a large- 
scale smart parking project.1 The overall goal was 
to increase parking efficiency and drivers’ experi
ence as well as to evaluate demand-responsive pri
cing. In order to monitor parking occupancy, on- 
street parking spaces were equipped with sensors 
and recorded occupancy continuously from 
April 2011 to July 2013. According to the SFpark 
project, due to various sensor failures in the course 
of time, the data quality is best for the initial three 
months. Furthermore, the literature suggests that 
three months provide sufficient data to develop 
a reliable prediction model (e.g. Badii, Nesi, and 
Paoli 2018; Rajabioun and Ioannou 2015; Stolfi, 
Alba, and Yao 2017). Therefore, in this work, data 
from the initial phase of the project from 
April 2011 to June 2011 were considered. Overall, 
the data cover the hourly occupancy status in 312 
on-street parking segments (with 6291 parking 
spaces) distributed across 9 parking districts. 
A map of the distribution of the parking districts 
and their corresponding parking segments within 

the city of San Francisco is shown in Figure 1. For 
information regarding how the average occupancy 
changes over the months, please refer to the 
Appendix.

3.2. Geospatial data

Primarily OpenStreetMap (OSM) data were utilized 
to represent the street network.2 OSM provides 
a detailed street and pedestrian network. The land 
use data are provided by the City and County of 
San Francisco.3 The data include land use cate
gories for every parcel. In this work, three cate
gories were considered: industrial (production, 
distribution and repair), office (management, infor
mation, professional services), and residential. 
Three categories of POI data were also selected, 
including business, public transport, and tourist 
attractions. Business comprises the locations of all 
registered businesses, which are provided by the 
City and County of San Francisco.4 Public trans
port includes the locations of all train stations and 
stops within the city, derived from the OSM data 
mentioned before. Tourist POIs comprise the 20 
most popular tourist attractions, according to 
Tripadvisor.5 These data were collected in early 
2019.6

Figure 1. Parking district locations in San Francisco.
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4. Methodology

4.1. Overview

An overview of the methodology is shown in Figure 2. 
In a first step, the street data and the parking occu
pancy data were preprocessed. The geospatial data 
were then quantified according to the methods speci
fied in Section 4.3, based on which the geographic 
features were derived. The values of the features were 
normalized to a scale of 0 to 1. Moreover, temporal 
and historical occupancy features were defined. Given 
the input data, the prediction models were trained and 
validated based on the parking occupancy data.

4.2. Data preprocessing

In a first step, the parking occupancy data had to be 
prepared. A total of 11 weeks of data records was 
selected, from 11 April 2011–26 June 2011. In a next 
step, occupancy rates of each parking street segment 
were derived as follows: 

Occupancyrate 

¼
Total occupied seconds

Total vacant secondsþ Total occupied seconds
(1) 

In this work, we computed the occupancy rates of each 
parking street segment for each hour in each day. In 
other words, the denominator of the above equation is 
equal to 1 h = 3600 s.

Further, all parking segment locations were geore
ferenced and OSM street data were converted into 
network datasets. Two types of networks were consid
ered: A road network including all roads, as well as 
a pedestrian network. Impedence was defined as the 
distance in meters.

4.3. Quantification of geospatial information

In order to include geospatial information as input 
features of the prediction models, it needed to be 

quantified in a meaningful way. By doing so, geo
graphic predictors were created by assigning the values 
to each of the parking segment’s location. In the follow
ing, the three main approaches for the derivation of the 
geospatial features in this work are described.

4.3.1. Centrality
Centrality is a fundamental concept in network ana
lysis and has been used in various fields, such as social 
network analysis, urban planning and transportation 
(Wilson 2000). Especially in urban areas, centrality has 
been studied by transforming the edges of the street 
network into a relational graph, representing urban 
street patterns as spatial networks (so-called line 
graphs). By doing so, streets are mapped onto graph 
nodes and intersections of street segments onto the 
edges between the nodes (Crucitti, Latora, and Porta 
2006). In this work, 3 centrality indices were consid
ered and computed for each street segment: closeness 
centrality (Bavelas 1950), betweenness centrality 
(Freeman 1977; Brandes 2001), and alpha centrality 
(Bonacich and Lloyd 2001). Below are the mathema
tical expressions for indices in that order: 

C vð Þ ¼
1

P
w d w; vð Þ

;B vð Þ ¼
X

s�v�t

st vð Þ
st

;

x ¼ I � αAð Þ
� 1e (2) 

where σst is the number of shortest paths from node s to 
node t, σst vð Þ is the number of shortest paths from node 
s to node t that pass through v, d w; vð Þ is the distance 
between vertices v and w, α is the relative importance of 
endogenous versus exogenous factors in the determina
tion of centrality, A is the adjacency matrix and e are 
effects of external status characteristics.

The closeness centrality of a node (or conversely, 
a street segment in this article) quantifies the mean 
length of shortest paths between this node and all 
other nodes in a network. The higher the score of 
a node, the closer it is to all other nodes and thus the 

Figure 2. Overview of the methodology.
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more central in the network. The betweenness cen
trality of a node measures the number of times this 
node lies on the shortest path between two other 
nodes, acting as a “bridge” on that shortest path. 
High scores thus indicate critical nodes in 
a network. Finally, alpha centrality is a variation of 
eigenvector centrality, which is based on the concept 
that a node within a network is more important if it 
is linked to adjacent important nodes. For these three 
indices, a high centrality score indicates a high 
degree of importance of a street segment within the 
network.

4.3.2. Service area
Service areas are used to evaluate the accessibility of 
a facility, e.g. the service that is supplied along a traffic 
network (Talen and Anselin 1998). In this work, the 
associated buffer radius is drawn along the pedestrian 
network. The resulting service area is assumed to 
represent an area that covers a short walking distance 
from the parking street segment. The literature sug
gests that the maximum distance drivers are willing to 
walk to their destination is 500 m (Van Der Waerden, 
Timmermans, and De Bruin-verhoeven 2015). 
Accordingly, the service area radius was set to 500 m.

The land use features residential, office, and indus
trial were quantified within the service area of each 
parking street segment. The first land use feature was 
measured according to the number of residential units 
contained per service area, while the office and indus
trial features, respectively, were assessed by the sum of 
their square footage. In doing so, land use parcels were 
considered that lie partially or completely within the 
service area. Similarly, the number of business POI 
locations were counted within each service area.

4.3.3. Shortest path
As for the quantification of the tourist and public 
transport POIs in relation to the parking segments, 
shortest paths (Dijkstra 1959) were computed. In this 
work, single- source shortest paths were computed 
from the center point of each parking segment to all 
POIs along the pedestrian network. As a result, the 
mean distance (i.e. the average distance of all shortest 
paths from each parking segment to all points) was 
computed.

4.4. Geospatial feature selection

Making use of the approaches described above, nine 
geospatial features were derived in total. Three fea
tures were allocated to each of the categories central
ity, POIs, and land use. Table 2 shows all geospatial 
features and their derivation.

4.5. Prediction framework

The aim of the prediction framework is to forecast the 
occupancy rate [0, 1] of the parking street segments for 
a specific time in the future. A prediction horizon 
ranging from 1 step to 10 steps was considered. One 
time step corresponds to 1 h. Hence, occupancy rates 
from 1 h to 10 h ahead were predicted. This was 
realized by using historical occupancy rates as data 
input. Accordingly, to make a 1 step ahead prediction, 
the occupancy rate 1 h prior to the time at which 
occupancy is to be predicted was considered. 
Moreover, geospatial features and time (i.e. time 
of day) were considered in the data input. X is defined 
as the data input (i.e. a feature vector) and y corre
sponds to the prediction output. Generally, the pre
diction problem can therefore be described as follows: 

X ¼ t;O t � kð Þ;GF1; . . . ;GFif g; y ¼ O tð Þ (3) 

where t is the time (i.e. hour of the day), O tð Þ is 
occupancy at time t, k is the number of steps (i.e. 
hours) ahead to be predicted and GF1; . . . ;GFi are 
the geospatial features; Depending on which feature 
set in Table 3 is employed, there might be 0 (i.e. FS1) 
to 9 (i.e. FS8 – with all features) geospatial features.

In order to assess the effect of different predictors 
(i.e. different input features) on the prediction models, 

Table 2. Overview of geospatial features of each parking street segment and their derivation approach.
Category Feature Description Derivation

Centrality Closeness Closeness centrality of a parking segment Centrality calculation
Betweenness Betweenness centrality of a parking segment Centrality calculation
Alpha Alpha centrality of a parking segment Centrality calculation

POIs Business Count of the Business POIs around a parking segment Service area
Public Transport Mean distance to railway stations Shortest paths
Tourist Mean distance to tourist attractions Shortest paths

Land use Industrial Industrial floor area Service area
Office Office floor area Service area
Residential Number of residential units Service area

Table 3. Overview of the feature sets.
Input categories

Feature set
Historical 

occupancy Time Centrality POIs
Land 
use

FS1 
(baseline)

X X

FS2 X X X
FS3 X X X
FS4 X X X
FS5 X X X X
FS6 X X X X
FS7 X X X X
FS8 X X X X X
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8 feature sets were defined (FS1 to FS8), differing in 
their geospatial information input. Table 3 sum
marizes each feature set with its respective input 
categories.

4.6. Prediction models and parameterization

In the following, we introduce the two ML models 
employed in this work. Both the RF and FFNN models 
are popularly used for various prediction problems, 
especially for the prediction of parking occupancy (see 
Table 1). Furthermore, they are relatively straightfor
ward to implement and train. The models as well as 
the above preprocessing and geospatial feature pre
paration steps, were implemented using the 
R language. All the R codes can be accessed on the 
GitHub repository at https://github.com/michaelbal 
mer/OnStreetParkingPrediction.

4.6.1. Random forest
RF (Breiman 2001) is an ensemble learning method 
that uses a collection of decision trees for regres
sion and classification tasks. Specifically, 
a randomly selected subset of predictors from the 
training data is used to build the trees. The algo
rithm subsequently outputs the mean prediction of 
the individual trees. As a compromise between 
required processing power and model performance, 
the number of trees was set to 200. Additionally, 
for each feature and training data set, two hyper
parameters were tuned: the number of variables 
randomly selected at each split and the maximum 
number of terminal nodes each tree can have. 
Depending on the data input combination, the for
mer was set to 2–5, whereas the latter was set to 
100–1000.

4.6.2. Artificial neural network
ANNs (Haykin 2010) are connectionist systems, 
inspired by neural networks in the human brain. 
They have been implemented in various fields, for 
instance for engineering and technical problems. 
ANNs consist of neuron-like processing nodes, 
organized in layers. For this work, a FFNN with 
two hidden layers was built and optimized by the 
RMSprop optimizer. Each of the hidden layers con
sisted of 128 nodes which were activated by 
a rectified linear unit activation function. A mini- 
batch gradient descent approach was implemented 
by setting the batch size to 32. The number of 
epochs was set to 100. The batch size defines the 
number of samples that are passed through the 
network before weights are updated, whereas the 
number of epochs denotes the number of times 
the algorithm works through the entire training 
dataset.

4.7. Performance assessment

A variety of different evaluation metrics exist, such 
as Mean Absolute Percentage Error (MAPE), Mean 
Absolute Error (MAE), and Mean Squared Error 
(MSE). Parking occupancy can be as low as zero 
and any evaluation metric that divides by the true 
data (such as MAPE) is therefore inadequate for 
two reasons. The first is the immediate problem of 
division by zero, which can happen if there are no 
vehicles parked on the street segment during an 
observed period. The second problem is that the 
errors will tend to be largest for small ground truth 
values, so the prediction model will focus on cor
rectly predicting small values. However, most appli
cations are probably mostly interested in the 
accurate prediction of hours where there is a high 
occupancy and hence a metric that does not dis
advantage those occupancies is preferable.

MAE and MSE both avoid this problem by only 
looking at the magnitude of the deviation, irrespective 
of the target value. Applications can be assumed to be 
interested in avoiding gross errors, which are pena
lized harder by MSE. Hence, both MAE and MSE were 
used to evaluate the performance of the prediction 
models, and further complemented by the coefficient 
of determination (R2). Below, the mathematical 
expressions for the three metrics are given. 

MAE ¼
1
n

Xn

i¼1
yi � ŷi

�
�

�
�;MSE ¼

1
n

Xn

i¼1
yi � ŷi
� �2

;

R2 ¼ 1 �
Pn

i¼1 yi � ŷi
� �2

Pn
i¼1 yi � �yi
� �2 (4) 

where n is the number of data points, yi are the 
observed values, ŷi are the predicted values, and �yiare 
the mean values.

4.8. Experimental design

In order to address the research questions mentioned 
in Section 1, experiments were performed on all 8 
feature sets. To analyze different input scenarios, dif
ferent training and test splits were applied. For each 
feature set, the amount of training data was set to 
range from 1 day up to 10 days, in 1-day increments. 
Furthermore, to take into account potential differ
ences between weekdays, the datasets were trained 
on the same weekdays. For instance, for a training 
data input of 3 days, 3 consecutive Mondays were 
considered. The test dataset in that case then consisted 
of records on the following Monday. Prediction per
formances among different weekdays were finally 
averaged. For all combinations, a ten-fold cross vali
dation, a widely used and robust accuracy estimation 
method (Kohavi 1995), was applied. Hence, training 
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and test subsets comprised 90% and 10% of the total 
reference data, respectively.

Moreover, for each data input scenario and feature 
set, different prediction horizons were considered (see 
Section 4.5). All experiments were performed using 
both RF and ANN algorithms and results were com
pared in terms of MAE, MSE and R2. The evaluation of 
the contribution of the geospatial information to the 
prediction models formed a key interest. This was 
achieved by comparing the prediction performance 
of the baseline (FS1) to those of all other feature sets 
(FS2 to FS8) for each training period. Similarly, for 
each prediction horizon, the effect of the geospatial 
features was examined. Moreover, in order to evaluate 
the predictive importance of each feature, the percent 
increase in MSE (%IncMSE) was derived. It indicates 
the increase in error as a consequence of a feature 
being permuted (i.e. values randomly shuffled). The 
higher the value, the more important the feature.

In a last step, the variation of the models’ predictive 
performance as a function of geographic space was 
explored. Notably, model performances were evalu
ated in a quantitative and qualitative fashion for all 
parking districts and street segments.

5. Results

In this section, the results are presented evaluating the 
effect of varying the prediction horizon, that is, how 
far ahead the models predict the future (Section 5.1); 
the influence of the amount of training data on the 
model performance (Section 5.2); the contribution of 
the geospatial features to the overall model perfor
mance (Section 5.3); and finally the spatial variation 
of parking occupancy prediction (Section 5.4).

5.1. Prediction horizon

Figure 3 shows the performances as a function of the 
prediction horizon of at most 10 steps in terms of 
MAE for both the RF and ANN algorithms. 
Generally, it is apparent that an increased prediction 
horizon had a negative influence on the performance, 
as the error was increasing. This held true for all 
feature sets and both prediction models. Hence, the 
further into the future parking occupancy was pre
dicted, the more error-prone was the result.

Evidently, a comparison of the feature sets revealed 
that there was little difference for short-term predic
tions (i.e. predictions of few steps/h ahead). For 
a 1-step/h ahead prediction, results were almost iden
tical among feature sets. However, as the prediction 
horizon increased, differences became more 
prominent.

Predictions on feature sets containing geospatial 
information (FS2 to FS8) consistently outperformed 
the baseline (FS1) on all prediction steps when the RF 
model was considered. More importantly, predictions 
based on all the categories of geospatial features (i.e. 
FS8) performed considerably better than all other fea
ture sets. The same mostly applied to the ANN model. 
Table 4 provides an overview of model performances 
for all feature sets in terms of MAE, MSE and R2. 
Results of prediction horizons of 1, 5 and 10 steps 
are listed.

5.2. Training dataset size

To investigate how the results change under different 
amounts of training data, we vary the training dataset 
sizes from 1 day to 10 days in 1-day increments. This 

Figure 3. Performance as a function of the prediction horizon (i.e. how far ahead the models predict the future). Comparison 
between (a) random forest and (b) artificial neural network algorithms.
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investigation is of interest, as sometimes the data 
available for model training might be very limited, 
especially at the beginning of the data collection. 
Figure 4 illustrates the relationship between training 
dataset size and prediction performance for 
a prediction horizon of 5 steps/h.

When considering the RF model (Figure 4(a)), an 
increased amount of data input was beneficial up to 
a training dataset comprising 5 days, where an opti
mum was reached. An input of additional training 
data (i.e. 6 to 10 days) was not associated with model 
improvement. This applied to all prediction horizons 
(though only the result for a prediction of 5 steps/h 
ahead is shown). Moreover, patterns were very simi
lar regardless of the prediction horizon. However, it 
is important to note that performance differences as 

a function of the training dataset size were relatively 
small. It should also be noted that the overall pattern 
was very similar for all feature sets and that the 
baseline was outperformed by all other feature sets. 
Again, predictions using FS8 achieved best results 
consistently.

In comparison to the RF model, the impact of the 
training dataset size differs for the ANN model in 
terms of both pattern and magnitude (Figure 4(b)). 
Although best results were generally also achieved 
using a training dataset size of about 5 days, the 
model benefited from an increased amount of training 
data to a much greater extent. This was especially 
apparent for shorter prediction horizons. Moreover, 
similar to the results for RF, using FS8 generally 
achieved best results.

Table 4. RF and artificial ANN performance of all feature sets on prediction horizons of 1, 5 and 10 steps/h. Comparison in terms of 
MAE, MSE, and coefficient of determination (R2).

1 step ahead 5 steps ahead 10 steps ahead

Feature set Algorithm MAE MSE R2 MAE MSE R2 MAE MSE R2

1 RF 
ANN

0.071 
0.093

0.010 
0.017

0.857 
0.811

0.146 
0.171

0.036 
0.048

0.517 
0.402

0.165 
0.181

0.043 
0.051

0.415 
0.329

2 RF 
ANN

0.069 
0.096

0.010 
0.018

0.868 
0.797

0.129 
0.167

0.028 
0.045

0.619 
0.420

0.138 
0.180

0.032 
0.051

0.581 
0.332

3 RF 
ANN

0.068 
0.093

0.010 
0.017

0.870 
0.803

0.125 
0.166

0.027 
0.045

0.636 
0.419

0.131 
0.181

0.029 
0.051

0.610 
0.341

4 RF 
ANN

0.068 
0.099

0.010 
0.019

0.869 
0.787

0.125 
0.166

0.027 
0.045

0.642 
0.420

0.130 
0.179

0.029 
0.051

0.618 
0.349

5 RF 
ANN

0.068 
0.097

0.009 
0.019

0.872 
0.797

0.122 
0.164

0.026 
0.044

0.659 
0.435

0.126 
0.177

0.027 
0.050

0.639 
0.363

6 RF 
ANN

0.068 
0.096

0.009 
0.018

0.873 
0.812

0.120 
0.165

0.025 
0.049

0.665 
0.443

0.125 
0.177

0.027 
0.061

0.646 
0.367

7 RF 
ANN

0.068 
0.096

0.009 
0.017

0.872 
0.808

0.121 
0.164

0.025 
0.044

0.665 
0.426

0.125 
0.177

0.027 
0.050

0.646 
0.355

8 RF 
ANN

0.068 
0.093

0.009 
0.017

0.874 
0.808

0.119 
0.161

0.025 
0.042

0.673 
0.449

0.123 
0.171

0.026 
0.047

0.655 
0.390

Figure 4. Performance as a function of the training dataset size. Comparison between (a) random forest and (b) artificial neural 
network algorithms. Prediction horizon of 5 steps/h ahead.
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5.3. Contribution of geospatial features

5.3.1. Feature importance
In order to evaluate the contribution of individual 
geospatial features to the overall model performance, 
feature importance was determined for the RF model. 
Figure 5 gives insight into feature importance in terms 
of IncMSE.

When average values across all prediction horizons 
are considered, the time of day feature exceeds an 
IncMSE of 0.05 and contributes most to the prediction 
model, followed by the historical occupancy. In terms 
of geospatial features, the land use feature office 
showed the highest predictive importance. The POI 
feature tourist attractions contributed slightly less, 

followed by the POI feature business. Centrality fea
tures alpha and betweenness contributed least to the 
prediction model.

5.3.2. Influence on prediction model performance
Figure 6 shows the performance improvement as 
a function of the prediction horizon. For the RF algo
rithm (Figure 6(a)), the length of the prediction hor
izon was clearly correlated with a model performance 
improvement when results of FS2 to FS8 were com
pared to those of the baseline (FS1). The longer the 
prediction horizon, the more the values of each feature 
set diverged. Accordingly, on a short-term prediction 
horizon, the inclusion of geospatial information 

Figure 5. Random forest feature importance. Feature set 8. Mean values across all prediction horizons.

Figure 6. Relative performance improvement using FS2 to FS8, compared to the baseline (FS1) as a function of the prediction 
horizon. Comparison of (a) random forest and (b) artificial neural network algorithms.
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produced improvements of 3.1–4.2%, whereas on 
a prediction horizon of 10 steps these values amounted 
to 16.5–25.4%. The most significant improvements 
were recorded for FS8 across all prediction horizons, 
where all three categories of geospatial features were 
included.

Unlike the RF model, performance improvement 
for the ANN model did not steadily increase as 
a function of the prediction horizon (Figure 6(b)). 
Nevertheless, on longer prediction horizons, improve
ments were achieved. On average, again, FS8 showed 
most improvement across all prediction horizons, ran
ging from approximately 0–7%. It should be noted 
that certain prediction horizons (e.g. 3 and 8 steps) 

showed more improvement than others. However, no 
clear pattern could be recognized.

5.4. Spatial variation of the prediction 
performance

5.4.1. Quantitative assessment
A quantitative assessment was carried out by compar
ing the prediction model performance across the park
ing districts. The performances of each district on 
a 5-step prediction horizon are shown in Figure 7. 
Generally, there were performance disparities between 
the parking districts. The district Mission recorded 
best parking occupancy prediction results for its 

Figure 7. Performance of parking segments aggregated by parking district on a 5-step prediction horizon. Comparison of random 
forest and artificial neural network using (a) FS1 and (b) FS8.

Figure 8. Relative performance improvement using FS8 compared to the baseline. Comparison of parking segments aggregated 
by parking districts on 1-step and 5-step prediction horizons. Random forest algorithm. The dashed line indicates no change (i.e. 
0% performance improvement).
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parking segments for both feature sets and algorithms. 
Accordingly, using the RF model with FS8 led to an 
MAE of 0.06 on a 5-step prediction horizon for street 
segments in this district. In contrast, parking occu
pancy rates were most difficult to predict in the dis
tricts Civic Center and Downtown. The median MAE 
value in the former was about 0.14 with the above 
stated prediction set-up.

The introduction of geospatial information (i.e. the 
usage of FS8) improved median occupancy prediction 
values for all districts on all prediction horizons for 
both RF and ANN algorithms.

Drawing on the above results, relative model 
improvement for each district was derived by comput
ing the relative differences in terms of MAE between 
FS8 and the baseline (FS1) in the RF model. As shown 
in Figure 8, by including geospatial information in the 
prediction model, performance improvements were 
observed for all the districts. However, prediction 
improvements deviated across the districts. The most 
significant improvements were recorded in the dis
tricts Mission and Inner Richmond on a 1-step pre
diction horizon and in Mission and Fisherman’s 
Wharf on a 5-h prediction horizon. Median improve
ments were as high as 5–10% and around 25% for the 
former and the latter, respectively. Parking segments 
in Civic Center saw least prediction improvement, 
with median values of 0% and 10% on a 1-step and 
a 5-step prediction horizon, respectively.

Comparing Figures 7 and 8, we can see that loca
tions that were difficult to predict when using the 
baseline seemed to remain to be difficult to predict 
after the inclusion of geospatial information in the 
model.

5.4.2. Qualitative assessment
In the following, a qualitative assessment of the spatial 
variability of prediction performance is provided. The 
parking segments’ occupancy prediction results using 

FS8, and the relative performance improvement of FS8 
compared to the baseline are visualized in Figure 9.

In general, no consistent pattern across space is 
identifiable for model performance with FS8 
(Figure 9(a)). In many cases, parking segments 
whose occupancy rates were reliably predicted are 
located next to or in the vicinity of others with 
relatively poor model performance. Especially in 
the north-eastern parking districts of Fisherman’s 
Wharf and Downtown as well as in the central 
districts of Civic Center and Fillmore, prediction 
results across parking segments were fairly hetero
geneous. Nevertheless, in the southern parking dis
trict of Mission, parking occupancy was predicted 
very reliably for all segments.

Similarly, there was no distinct pattern when the 
relative performance improvement was considered 
(Figure 9(b)). However, some parking segments 
with already difficult to predict occupancy rates 
did not benefit much from the inclusion of geos
patial information, especially in the centrally 
located Civic Center district. In contrast, parking 
segments that achieved good prediction results 
using the baseline experienced further improve
ment when geospatial information was added (e.g. 
in the Mission district).

To further investigate the effect of spatial context 
on parking occupancy prediction, the district Civic 
Center was examined in more detail. Figure 10 
depicts a close-up view of the district. The perfor
mance of FS8 and the relative performance 
improvement compared to the baseline on 
a 5-step prediction horizon are shown. 
Additionally, the locations of the POIs (business, 
tourist, and public transport) are included. 
Evidently, there were two parking segments with 
especially distinct differences in terms of model 
performance in the Civic Center district (see the 
labeled street segments in Figure 10). 200 Polk 

Figure 9. Spatial distribution of performance on a 5-step prediction horizon. Random forest algorithm. (a) FS8 and (b) relative 
performance improvement using FS8 compared to the baseline (FS1).
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Street (2) recorded an MAE of 0.28, whereas 500 
Hayes Street (1) recorded an MAE of merely 0.07. 
Moreover, the inclusion of geospatial information 
improved the former and the latter by 12.5% as 
oppsoed to 35.2%, respectively. Other parking seg
ments in the district recorded MAE performance 
values of 0.11 to 0.20 and improvements of −14.6 
to 22.7%. Furthermore, it is apparent that there are 
only few businesses in the vicinity of 200 Polk St, 
the parking segment that was most difficult to pre
dict. In contrast, a high number of businesses can 
be found at or near 500 Hayes St and other parking 
segments that were relatively easy to predict.

Another possible explanation of the diverging 
occupancy prediction results for the above two park
ing street segments might be the variation of their 
occupancy rates over time (Figure 11). Evidently, the 
occupancy rate for 200 Polk St fluctuated heavily over 
time, regularly reaching occupancy rates of 0 and 1. 
500 Hayes St, on the contrary, recorded steady rates, 

mostly hovering between 0.6 and 0.8. This suggests 
that parking segments with significant temporal varia
bility of their occupancy rates are generally more dif
ficult to predict.

5.5. Summary of results

In summary, the most relevant findings are:

● The incorporation of geospatial information con
sistently helped to improve prediction models. 
Improvements of up to 25.4% compared to the 
baseline were achieved on long-term prediction 
horizons (e.g. 10 h ahead prediction).

● The inclusion of more geospatial information 
was associated with better model performance. 
Land use and POI information were more bene
ficial than centrality. Among all the geospatial 
features, the land use feature office showed most 
predictive relevance, followed by POI features 
tourist and business.

● Longer prediction horizons entailed less reliable 
predictions.

● With the RF and FFNN models currently imple
mented in this study, an increased amount of 
training data (i.e. more days of training data) 
did not necessarily improve the prediction 
model.

● There were performance disparities across the 
parking districts. However, no clear spatial pat
tern was observed. The introduction of geospatial 
information into the model did not entail uni
form improvement across space.

● The ANN model was outperformed by the RF 
model across all metrics. Moreover, the RF model 
benefited from geospatial information to a much 
larger degree.

Figure 10. Spatial distribution of prediction performance in the parking district Civic Center using (a) FS8 and (b) relative 
performance improvement using FS8 compared to the baseline (FS1). Random forest algorithm on a 5-step prediction horizon. 
POIs are indicated as black dots (business), red squares (public transport) and red triangles (tourist). Labels show locations of street 
segments (1) 500 Hayes St, and (2) 200 Polk St.

Figure 11. Occupancy rates of 500 Hayes St (blue) and 200 
Polk St (green) parking segments over a 2-week period.

GEO-SPATIAL INFORMATION SCIENCE 451



6. Discussion

6.1. Benefits of the inclusion of geospatial data

To answer the leading research question, the benefit 
of adding geospatial information to the parking 
occupancy prediction models was addressed. In 
order to do so, experiments were conducted that 
compared the relative performance improvement of 
data inputs containing geospatial information (FS2 
to FS8) with the baseline (FS1). Additionally, the 
importance of each individual feature was explored 
for the RF model using FS8. Overall, prediction per
formance could be increased by up to 25.4%. Across 
all prediction horizons, FS8 consistently performed 
best, indicating that more geospatial input is bene
ficial. These findings are insofar relevant, as they 
point out that the incorporation of the underlying 
geographic context helps to improve parking occu
pancy prediction models. Besides, the results are 
novel, as, to the best of our knowledge, no study 
has previously considered the explicit inclusion of 
geospatial information for parking occupancy pre
diction problems.

In other fields, geospatial information has also been 
found beneficial as input for prediction problems. 
POI/land use data have been implemented for traffic 
models, potentially improving conventional models 
(Krause and Zhang 2019; Luo 2010; Sarlas and 
Axhausen 2016). Similarly, Chan and Cooper (2019) 
used centrality information to predict bicycle mode 
share and flows, achieving comparable results to more 
complex models that lack spatial input.

Generally, the prediction models performed better 
incorporating the geospatial categories land use and 
POI, whereas centrality contributed less to the predic
tion. It could be argued that the categories land use 
and POI are conceptually more similar and therefore 
had a similar impact on the prediction model. 
Moreover, the mere location of a parking street seg
ment with respect to the entire street network did not 
appear to play as influential a role as the configuration 
of geographic context in its local vicinity.

Results of overall contributions of geospatial cate
gories agreed with individual feature importance. Each 
POI feature contributed more to the model than cen
trality features. The land use feature office was con
siderably more beneficial than residential and 
industrial. This could partially be explained by the 
fact that many parking districts in the study area lack 
industrial areas. The land use classes residential and 
office, on the other hand, are more evenly distributed, 
with high concentrations in certain areas.

6.2. Training dataset size (Sub-RQ1)

As mentioned before, the impact of varying the 
amount of data inputs on the model performance is 

also a critical aspect, as sometimes the data available 
for model training might be very limited, especially at 
the beginning of the data collection. In this study, the 
amount of input data to train the model was varied 
from 1 day to 10 days of occupancy data. Overall, little 
change was recorded for the RF model. The fact that 
an increased amount of training data did not lead to 
improved results is insofar unexpected as a larger 
amount of input data generally is associated with 
increased performance (Figueroa et al. 2012; Bock 
2018). Since the recorded occupancy data was rela
tively uniform across time (i.e. there were no signifi
cant deviations, such as special events or holidays), 
unexpected anomalies in the data can be excluded as 
a reason. Hence, further research is needed to investi
gate the influence of the training dataset size in the 
context of the prediction model implemented with RF.

The ANN model, by contrast, benefited from an 
increased amount of training data significantly, espe
cially on short-term predictions. These findings are in 
agreement with Ji et al. (2015) and Bock (2018), who 
found that their models improved when more input 
data was added.

6.3. Temporal prediction horizon (Sub-RQ2)

Further, the influence of the temporal prediction horizon 
on the model performance was examined. Prediction 
horizons of 1 to 10 steps were considered, whereby 1 
step corresponds to 1 h. Unsurprisingly, as the prediction 
horizon increased, the prediction results became less 
reliable, due to the fact that errors accumulate. This is 
in agreement with several studies that compared the 
length of the prediction horizon with the model perfor
mance (Monteiro and Ioannou 2018; Zheng, 
Rajasegarar, and Leckie 2015; Liu et al. 2018; Mei et al. 
2019).

The fact that the length of the prediction horizon 
was correlated with the model performance was also 
reflected in the feature importance. The further the 
occupancy rates lay in the past, the less important they 
were to the model. As a result, beyond a certain pre
diction horizon, the temporal and geospatial features 
were relatively more important. This is also consistent 
with the study of Zheng, Rajasegarar, and Leckie 
(2015) who found that the inclusion of previous obser
vations as a feature is very beneficial for short-term 
predictions. However, as the prediction horizon 
increased, other features became more relevant.

6.4. Spatial prediction variation (Sub-RQ3)

The spatial variation of the prediction performance was 
evaluated to address Sub-RQ3. Evidently, there were 
spatial disparities, manifested by prediction perfor
mances that were not uniform across space. Parking 
occupancy could be predicted more reliably in certain 
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districts than others. However, as a whole, no clear 
pattern was recognizable. The same applied for the 
performance improvement after the inclusion of geos
patial information, i.e. the extent of improvement is 
not selective about space. Nevertheless, the model was 
improved for many street segments’ occupancy rates 
that were reliably predicted. Conversely, a considerable 
number of street segments recording unreliable predic
tions could only slightly benefit from the inclusion of 
geospatial information. Hence, locations that were 
notoriously difficult to predict remained difficult to 
predict after the inclusion of geospatial information 
in the model. A potential reason might also be that 
both the RF and FFNN developed in this study might 
not be able to accurately model the changing patterns 
of the occupancy on heavily fluctuating data (e.g. the 
data of “200 Polk St”, see Figure 11). Moreover, proxi
mity of parking street segments did not automatically 
suggest similar prediction performance, as already sug
gested by Rajabioun and Ioannou (2015), Richter, 
Martino, and Mattfeld (2014), and Leu and Zhu (2015).

6.5. Machine learning algorithm comparison 
(Sub-RQ4)

Finally, Sub-RQ4 aimed to discover performance differ
ences of ML algorithms that were implemented in this 
work, namely RF and ANN. The performance of RF 
surpassed that of the ANN in every aspect. Moreover, 
the ANN model was much less receptive to the inclu
sion of geospatial information, recording an improve
ment of up to 7.2%, compared to up to 25.4% for RF.

In the literature, there is no consensus as to which 
algorithm is better suited to solve the problem of 
parking occupancy prediction. Both RF and ANN 
algorithms have been used to reliably make predic
tions (e.g. Bock 2018; Dias, Bellalta, and Oechsner 
2015; Zheng, Rajasegarar, and Leckie 2015; Awan 
et al. 2020; Koumetio Tekouabou et al. 2020). The 
fact that an FFNN algorithm was used instead of 
a more complex RNN or LSTM can be seen as 
a limitation. Therefore, the performance of other 
neural networks should be explored in future work. 
However, literature has shown that RNN or LSTM 
algorithms are not necessarily better suited than 
other algorithms (e.g. Arjona et al. 2020; Badii, Nesi, 
and Paoli 2018). The fact that the RF model outper
formed the ANN model considerably in this work 
could be explained by its robustness to overfitting 
and its relative simplicity.

7. Conclusion and future work

Prediction of parking availability in urban environ
ments has attracted significant research interest in 
recent years. Different prediction models have been 

proposed, considering various external data inputs, 
such as temporal, weather and traffic information. 
However, the underlying geospatial context of the 
study area has received little attention so far. This 
work aimed to investigate the value of geospatial infor
mation for the prediction of on-street parking occu
pancy. To this end, RF and ANN (i.e. FFNN in this 
paper) prediction models were implemented and 
geospatial data regarding road network centrality, 
land use, and POIs were used as input features. The 
key findings can be summarized as follows:

● The inclusion of geospatial information leads to 
a performance improvement of up to 3% and 
25% on a short-term and a long-term prediction 
horizon, respectively. Hence, the incorporation 
of geospatial context adds value to parking occu
pancy prediction models. The inclusion of land 
use and POI information were more beneficial 
than network centrality measures.

● Generally, longer prediction horizons (i.e. how 
far ahead a model seeks to predict the future) 
produced less reliable predictions, due to the 
accumulation of errors. Nevertheless, the inclu
sion of spatial information showed much more 
relevance in long-term predictions.

● The amount of training data did not significantly 
impact the RF model’s prediction performance. 
As occupancy data anomalies could be excluded, 
the reason is unknown and has to be investigated 
in further research. The ANN model’s perfor
mance, however, benefited significantly from an 
increased amount of training data.

● There were prediction performance disparities 
across parking districts. Moreover, no clear spa
tial pattern could be identified, and proximity of 
parking segments did not necessarily imply simi
lar prediction results.

● In terms of model performance, the RF model out
performed the ANN model in all respects. 
A possible explanation is its robustness to overfit
ting as well as its relative simplicity compared to the 
ANN.

In spite of the promising results, there are opportu
nities to further advance the research on parking 
occupancy prediction incorporating geospatial infor
mation. Firstly, more geospatial data sources such as 
the population distribution, or the public transporta
tion network could be considered. Moreover, instead 
of using the last occupancy rate, a sequence of histor
ical occupancy rates might be employed. Secondly, 
research could be extended in terms of prediction 
algorithms. For example, the usage of ANNs could 
be further exploited by implementing more complex 
architectures (e.g. RNNs and LSTM). The linking of 
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advanced statistical methods (such as ARIMA) with 
ML would also be a conceivable option. Thirdly, to 
check the robustness of the findings, we are also inter
ested in applying the proposed evaluation framework 
to other cities.

Notes

1. https://www.sfmta.com/projects/sfpark-pilot- 
program

2. https://download.geofrabrik.de/north-america/us/ 
california/norcal.html

3. https://datasf.org/opendata/
4. https://datasf.org/opendata/
5. https://www.tripadvisor.com/Attractions-g60713- 

Activities-San_Francisco_California.html
6. Note that there is a time gap between the parking 

occupancy data and these geospatial data. 
Considering that the study area has been rather stable 
social-economically over this gap, we argue that the 
geospatial data collected in early 2019 are still suitable.
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Appendix

A plot (Figure A.1) has been created to show how the hourly 
average occupancy changes over the months. Note that this 
plot uses all the SFpark data (instead of only the data from 

the first three months). As can be seen from the plot, the 
different months seem to have very similar hourly occu
pancy patterns.

Figure A1. Hourly average occupancy values over the course of a day, by month.
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