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ABSTRACT 
 

 

This paper applies modified He's iteration perturbation method to study periodic solutions of 
strongly nonlinear oscillators. Some examples are given to illustrate the effectiveness and 
convenience of the method. The results are compared with the numerical solution and the 
comparison showed a proper accuracy of this method. 
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1. INTRODUCTION 
 
Obviously the study of nonlinear systems and 
their behavior remains one of the most important 
aspects of engineering, applied mathematics, 

physics and other scientific fields. These 
nonlinear systems are real physical systems 
which are modeled by nonlinear differential 
equations, for this reason, one cannot 
overemphasize the importance of understanding 
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and gaining useful insights towards the behavior 
of these nonlinear differential equations so as to 
make accurate and precise decisions while 
working with real physical systems.  
 
On the other hand, nonlinear differential 
equations are very difficult and complex to study. 
Due to their complexity, it is very difficult and 
most times impossible to obtain an exact solution 
to these nonlinear differential equations. Over the 
years, researchers have developed many tools 
that will aid in the study of these nonlinear 
differential equations. Methods like perturbation 
methods [1,2,3], numerical methods [4], and 
most recently the approximate methods have 
been developed in order to understand the 
behavior of these nonlinear differential equations. 
Many approximate methods have evolved 
recently, among them are, Iteration method                
[5,6], Frequency-amplitude formulation [7-9], 
Energy balance method [10-12], Variational 
iteration method [13,14], Homotopy perturbation 
method [15-19] Parameter expanding method 
[20-22] and Hamiltonian approach [23,24]. 
 
With the rapid development of nonlinear science, 
it appears an ever-increasing interest of 
scientists and engineers in the analytical 
asymptotic techniques for nonlinear problems. 
Though it is easy for us now to find solutions to 
linear systems by means of numerical 
simulations, it is still very difficult to solve 
nonlinear problems analytically. The study of 

nonlinear oscillators has been important in the 
development of the theory of dynamical systems. 
The Van der Pol oscillator can be regarded as 
describing a mass-spring-damper system with a 
nonlinear position-dependent damping coefficient 
or, equivalently, an RLC electrical circuit with a 
negative nonlinear resistor, and has been used 
to develop models in many applications, such as 
electronics, biology or acoustics. It represents a 
nonlinear system with an interesting behavior 
that arises naturally in several applications. Also 
Duffing oscillators are described by nonlinear 
differential equations that modeled the behavior 
of many practical problems that arise in 
engineering, physics, and in many real world 
applications [1,2,13,25]. It is well-known that 
Duffing oscillators can be found in the modeling 
of free vibrations of a restrained uniform beam 
with intermediate lumped mass, the nonlinear 
dynamics of slender elastica, the generalized 
Pochhammer-Chree (PC) equation, the 
generalized compound KdV equation in nonlinear 
wave systems, among others [26]. Duffing's 
equation is a model of many structural systems, 
it is regarded as one of the most important 
differential equations because it appears in 
various physical and engineering problems such 
that, nonlinear optics and plasma physics. 
 
In this paper only the first order approximations is 
considered as it gives results with enough 
technical accuracy.  

 

2. THE ITERATION METHODS 
 
Consider the following nonlinear equation  
 

( , , , ) 0,x f x x x t                                                                                    (1) 

 

Where   is a constant parameter and ( , , , )f x x x t   is nonlinear analytical function.  

We introduce the variable /y dx dt , and then Eq. (1) can be replaced by an equivalent system 

 

( ) ( ), ( ) ( , , , ).x t y t y t f x y y t                                                             (2) 

 
Assume that its initial approximate guess can be expressed as 
 

( ) cos( )x t A t                                                                                                         (3) 

 
Where  is the angular frequency of oscillation.  Then we have 
 

2( ) sin( ) ( ), ( ) cos( ) ( ).x t A t y t x t A t y t                             (4) 

 
Substituting Eqs. (3) and (4) into Eq. (2), we obtain 
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2 1 2 1
0 0

( ) ( , , , ) sin(2 1) cos(2 1) .n m
n m

y t f x y y t n t m t     
 

 
 

 
       

 
          (5) 

 
Substituting Eq. (5) into Eq. (2)2, yields 
 

 1 3 1 3( ) sin sin3 ... cos cos3 ... .y t t t t t                                   (6) 

 
Integrating Eq. (6), gives 
 

1 3 1 3

1 1
( ) cos cos3 ... sin sin3 ... .

3 3
y t t t t t


       


 

         
                        (7) 

 
Comparing Eqs. (4)1 and (7), we obtain the angular frequency   and eliminating the secular term 

from Eq. (7) we can obtain the amplitude A  of the oscillation, after them integrating Eq. (7) yields the 
first order approximate solution of Eq. (1)  
 

1 3 1 32

1 1
( ) sin sin3 ... cos cos3 ... .

9 9
x t t t t t


       


 

       
                    (8) 

 
The objective of this method is to eliminate dependent variable in succession until there remains only 
a single equation containing only one dependent variable. After the solution of remaining equation has 
been found, the other dependent variables can be found in turn, using the original differential equation 
or those that have appeared in the elimination process. 
 
3. APPLICATIONS 
 
In order to assess advantages and the accuracy of the iteration method, we should consider the 
following examples. 
 

3.1 Example 1 

 
As a first application, let us consider a classical Van der Pol oscillator with a nonlinear damping 
function of higher polynomial order, which models many physical problems, likes, an electrical circuit 
with a triode valve, and was later extensively studied as a host of a rich class of dynamical behavior, 
including relaxation oscillations, quasi periodicity, elementary bifurcations, and chaos [27]. The model 
considered is a classical Van der Pol oscillator with a nonlinear damping function of higher polynomial 
order described by the following nonlinear equation [28].   
 

2 4 6(1 ) 0.x x x x x x                                                                           (9) 

 
Eq. (9) can be separated to the two differential equations of the first order  
 

,x y                                                                                   (10) 

 

2 4 6(1 ) .y x x x x y                                                                    (11) 

 

Supposing that the exact solution of Eq. (9) is  
 

cos , then    sin ,x A t x y A t                                                                       (12) 
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Where A  is the amplitude of the limit cycle and   is the nonlinear frequency, substituting x  and y  

into the right hand side of Eq. (11), we have 
 

   
 

6 3 4 24 2

5 2 7

5 9 3
64 8 4 4 16 4

5
16 4 64

cos 1 sin 1 sin3

1 sin5 sin7 .

A A A AA A

A A A

y A t A t t

t t

 

   

    

 

         


   


                            (13) 

 
Integrating (13) yields 
 

   
 

6 3 4 24 2

5 2 7

5 9 3
64 8 4 12 16 4

5
80 4 448

sin 1 cos 1 cos3

1 cos5 cos7 .

A A A AA A A

A A A

y t A t t

t t




 

   

 

         


   

                           (14) 

 

Comparing (12) and (14) we get 1.  Eq. (14) may be written as  
 

   
 

6 3 4 24 2

5 2 7

5 9 3
64 8 4 12 16 4

5
80 4 448

sin 1 cos 1 cos3

1 cos5 cos7 .

A A A AA A

A A A

y A t A t t

t t



 

          


   

                              (15) 

 
Avoiding the presence of a secular term in Eq. (15) needs  
 

6 4 25
1 0,

64 8 4

A A A
                                                                                                    (16)   

                     
then we obtain the amplitude   
 

1.56183,A                                                                                                                  (17) 

 
which leads the same value as illustrated in Yamapi et al. [28] by using Lindstedt's perturbation 
method (LPM). Thus Eq. (15) reduces to  
 

3 4 2 5 2 79 3 5
sin 1 cos3 1 cos5 cos7 .

12 16 4 80 4 448

A A A A A A
y A t t t t

     
          

   

                            (18) 

 
Integrating (18) yields the first order approximate solution of Eq. (9)   
 

3 5 7 5 7 73 9 5
cos sin 3 sin 5 sin 7 .

9 4 16 64 25 16 64 3136

A A A A A A
x A t t t t

     
         

   

                            (19) 

 
Eq. (9) is numerically solved and the result is compared with analytic one (19). In Fig. 1 the both 
solutions are plotted. Comparing the solutions it is evident that they are in a good agreement. 
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Fig. 1. comparison of the approximate solution (      ) with the numerical solution (- - -) for 

0.1   

3.2 Example 2 
 

The model considered is the Rayleigh oscillator with excitation term in the form  
 

2 2(1 ) sin .x x x x x t                                                                                       (20) 
 

We re-write Eq. (20) in the form  
 

 ,x y                                                                              (21) 
 

2 2(1 ) sin ,y x y y y t                                                                                  (22) 
 

supposing that  
 

cos , then    sin .x A t y A t                                                                          (23) 
 

Substituting from Eq. (23) into the right hand side of Eq. (22), we have 
 

2 2 2 2 3 3

2 2 2 2

3
4 2 4

4 4

cos (1 )sin sin sin 3

sin(2 1) sin(2 1) .

A A A

A A

y A t A t t t

t t

    

   

    

 

     


    


                                 (24) 

Integrating (24) yields 
 

2 2 2 2 3 2

2 2

3
4 2 12

4(2 1) 4(2 1)

sin (1 ) cos cos cos3

cos(2 1) cos(2 1) .

A A AA

A A

y t A t t t

t t

    


   
 

   

  

      


    

                               (25) 

 

Comparing (23) and (25), we get 1.   We now re-write Eq. (25) as follows 
 

2 23 3
sin (1 )cos (1 )cos3 .

4 4 12

A A A
y A t A t A t


                                                   (26) 

 

No secular term requires that, 
 

23 3
1 0.

4 4

A A
                                                                                                        (27) 
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Then we obtain the amplitude  
  

1.75831,A                                                                                                               (28) 
 

thus Eq. (26) reduces to  
2

sin (1 )cos3 .
12

A
y A t A t


                                                                                (29) 

 

Integrating Eq. (29) yields the first order approximate solution of Eq. (20)   
2

cos (1 )sin 3 .
36

A
x A t A t


                                                                               (30) 

 

The analytical result (30) and result obtained by numerical integration of Eq. (20) are compared. The 
two solutions are in a good agreement as shown in Fig.  2. 
 

 
 

Fig. 2. Comparison of the approximate solution (       ) with the numerical solution (- - -) for 

0.1   
3.3 Example 3   
 

We consider the strongly nonlinear oscillator  
 

2 2(1 ) cos .x x x x x xx t                                                                               (31) 

Eq. (31) is equivalent to the two non-autonomous systems 
 

,x y                                                                                         (32) 
 

2 2(1 cos ) ,y x x y x t y                                                                            (33) 
 

supposing that  
 

cos , then    sin .x A t y A t                                                                         (34) 
 

Substituting from Eq. (34) into the right hand side of Eq. (33), we have 
2 2 32

2 2

23
4 4 4

4 4

cos (1 )sin ( 1)sin 3

sin(2 1) sin(2 1) .

A AA

A A

y A t A t t

t t

  

   

     

 

      


    


                      (35) 

 

Integrating Eq. (35) yields 
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2 2 32

2 2

23
4 4 12

4(2 1) 4(2 1)

sin (1 )cos ( 1)cos3

cos(2 1) cos(2 1) .

A AA A

A A

y t A t t

t t

 


 
 

    

  

       


    
                                   (36) 

 

Comparing (33) and (34) yields    
 

We now re-write Eq. (36) as follows  

                                                           (37) 
Avoiding the secular term in Eq. (37) needs  
 

2 1 0,
4

A
A                                                                                                        (38) 

 

then we obtain the amplitude  
 

0.882782,A                                                                                                       (39) 
 

thus Eq. (37) reduces to  
2

sin cos3 .
12

A
y A t t


                                                                                  (40) 

 

Integrating (40) yields the first order approximate solution of Eq. (31)  
 

2

cos sin 3 .
36

A
x A t t


                                                                                       (41)     

 

Comparing result (41) with that obtained by numerical integration of Eq. (31). In Fig. 3 it is shown that 
the two solutions are in a good agreement. 
 

 
 

Fig. 3. Comparison of the approximate solution (       ) with the numerical solution (- - -) for 

0.1   
3.4 Example 4 
   
Now we will consider the following Duffing oscillator with 5th-order nonlinearity studied by [29,30]:  
 

5 0.x x x                                                                                                (42) 

1. 

2
2sin (1 )cos cos3 .

4 12

A A
y A t A A t t


     
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Eq. (42) can be separated to the two differential equations of the first order  
 

,x y                                                                                              (43) 
 

5.y x x                                                                                                   (44) 
 

Supposing that the exact solution of Eq. (42) is  
 

cos , then    sin ,x A t x y A t                                                        (45) 
 

Where A  is the amplitude of the limit cycle and   is the nonlinear frequency, substituting x  from 
Eq. (45) into the right hand side of Eq. (44), we have 
 

5 5
45 5

1 cos cos3 cos5 .
8 16 16

A A
y A A t t t

 
   

 
     

 
                                         (46) 

 

Integrating (46) yields 
 

5 5
45 5

1 sin sin3 sin5 .
8 48 80

A A A
y A t t t

 
   

  
 

     
 

                                     (47) 

 

Comparing (45) and (47) we get
45

81 A   Which is the same as given by (Max-min frequency 

see Ibsen et al. [29] and parameter-expanding method see Zengin et al. [30]). Integrating (47) yields 
the first order approximate solution of Eq. (42)   
 

5 5
4

2 2 2

5 5
1 cos cos3 cos5 .

8 144 400

A A A
x A t t t

 
   

  
 

    
                                              

 (48) 

 

The analytical result (48) and result obtained by numerical integration of Eq. (42) are compared. The 
two solutions are in a good agreement as shown in Fig. 4. 
 

 
Fig. 4. Comparison of the approximate solution (       ) with the numerical solution (- - -) for 

0.1 
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4. CONCLUSION 
 
In this paper, the modified iteration perturbation 
method has been implemented in order to 
analyze the equation of nonlinear oscillators; we 
have shown the effectiveness and efficiency of 
the iteration perturbation method in obtaining 
analytic approximate solutions to nonlinear 
differential equations. All the examples show that 
the presented results are in excellent agreement 
with those obtained by the numerical results 
obtained by using Runge-Kutta method. The 
general conclusion is that the iteration 
perturbation method provides an easy and direct 
procedure for determining approximations of 
periodic solutions to nonlinear oscillators.  
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