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Abstract

In this paper we define two new fou-order Schrodetype methods for finding zeros of nonling
equations having unknown multiplicity. In terms of computati@ost the new iterative methods requires

six evaluations of functions per iteration. It is proved tha new methods have a convergence of order
four. Numerical comparisons are included to demonstratgptanal convergence speed of the proposed
methods.

Keywords: Schroder-type method; root-finding; nonlinear equatiomdtiple roots; order of convergence;
efficiency index.

Subject classifications: AMS (MOS): 65H05, 41A25.
1 Introduction

The solution of a nonlinear equation is one of the most itapbproblem in computational mathematics,
science and engineering [1,3,10]. In this work, we preseatriew fourth-order iterative methods to find

- R R
multiple roots of the nonlinear equatioﬁ(x) =0,where / {1 C " for an open intervdlis a

scalar function. The multi-point method is of great pattimportance since it overcomes theoretical limits
of one-point methods concerning convergence order and computagéfiaéncy. Recently, many
modifications of the Newton-type methods for simple rooteHaeen proposed and examined [3] but little
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work has been done on multiple roots. Therefore, in thidystwve are interested in the case thatis a root
of multiplicity m > 1 of a nonlinear equation, that i (a) =0, k=0,1,2..m- land fm(a’) z0.

Therefore, the objective of this study is to develop a nessaéiterative method for finding multiple roots
of nonlinear equations of a higher order than the existergtive methods [3-9]. The purpose of this paper
is to show further development of the third-order meth&islfi addition, the new iterative methods have a
better precision than the classical Schroder method and Soewtal. methods [5-7]. Hence, the proposed
fourth-order method is significantly better when compavét these established methods.

The summary of the paper is as follows. The essentfadititns relevant to the present study are given in
section 2. In section 3, we derive two new multi-point methaxid verify their convergence order. In
section 4, two well-known methods are stated, which Wilsitate the effectiveness of the new fourth-order
iterative methods. Finally, in section 5, numerical example given to show the performance of the new
Schroder-type methods

2 Basic Definitions

Here we shall state some of the essential definitiohesd definitions will determine the behaviour of the
method, [1,3,9,10].

Definition 1. Let f(X) be a real-valued function with a roat and Iet{ Xn} be a sequence of real
numbers that converge towards The order of convergengeis given by

Hgéfif%:(¢o, M

R +
where P € and{ is the asymptotic error constant [1,3,10].

Definition 2. Let § = X —a be the error in thkth iteration, then the relation

6., =0 +0(&"), @

is the error equation. If the error equation exists, fhenthe order of convergence of the iterative method
[1,3,10].

Definition 3. Letr be the number of function evaluations of the method. Theiesfcy of the method is
measured by the concept of efficiency index and defined as:

p, 3)
wherep is the order of convergence of the method [1,3,10].

Definition 4. Suppose thak _,, X,_; and X, are three successive iterations closer to the @oofhen the
computational order of convergenuay be approximated by
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COC= In|3, = O 4
|3, +3,,|

whered = f (% )+ f'(x), [9].
3 Construction of the New Methods and Conver gence Analysis

In this section we derive two new fourth-order multi-poirethods for finding multiple roots of a nonlinear
equation. In terms of computational cost the new iteratigehods require total of six function evaluations.
The new Schroder-type methods are actually based on the Stbecded-order method and Thukral third-
order method given in [5,9], respectively.

3.1 Method 1

The first of our new scheme is actually based on theictsSchroder method. We use this method as our
first step and repeat the process at an improved poingfoe the new scheme is expressed as:

-y - f(xn)f'(xn) , 5
R - (%) (%) ?
- _ f(yn)f,(yn) , 6
K = T - (%) () Y

wheren e ¥ , % is the initial guess and provided that the denominator a$ (@nzero.

Theorem 1

N

- R
Let o O 1 be a multiple root of multiplicitym of a sufficiently smooth functio/ 1 < — for an

open intervall. If the initial guessX, is sufficiently close tar, then the convergence order of method
defined by (6) is four.

Pr oof

Let « € ® be a multiple root of multiplicitym of a sufficiently smooth functioff (X) e=x—-a,

eé=y-a,

Expanding f (X), f'(X), f"(X), f"'(X), f( )), f( )), f'( y), in a Taylor's series abou , we

have

f(@)=(%}q{1+i AQ}, %
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£(%) =( E:n)_(g?}f{ﬂZ aén} ®)
£"(x,) =((fr(n)_(g),Jeﬂ1 [1+Z G s%] ©
f7(,) =U$)_(§;),}eﬁ”{l+zl D.éa] (19)
F(y,) =( f(n;(!a)}ff[Hg A.?%'] )
o0 (1.
oo o5 ca)
wheren < N and
— :’:;)k)((aog)’ (14)
A~ (nTiTli)!’ "
on (o
G = ((r:: i)—!zT3| +
D= ((r:]: i)-lsT)u (18)
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Dividing (7) by (8), we get

&_  Té +(T12(m+2)_2m-5)e3+... (19)
m nf(m1) mM(mY)( m2 "

f(x.)
F(x.)

and dividing (9) by (8) yields

f'(x) _m-1_T,  (T*(m+1)-2mT)
fx) & m  m(m]

e+ (20)

Product of (19) and (20), we obtain

(f(&)J(f"m)J:m—l_ 2tg (3 (m+2)-2my) , -

en
f'(x,) )L f'(x,) m nf(m1)  m( m1( m2)
Substituting appropriate expressions in (5) and simplifying, yields
Yo —a =X~ , f(xﬂ) f,(xn) =- Tlg? +... (22)

f'(%) = f(x) f"(x) m(m+)

Now we need to expand (yn), f'( yn) , f"( yn) about@. Replacing appropriate expressions in (6),

f(yn) f'(yn) . (23)

en+ = yn_a_ I n
' f (yn)z_ f(yn) f (yn)

Consequently, we obtain

€y = [ﬁJ €, (24)

m’ ( m+ 1)3

which indicates that the order of convergence of the new Sahiyuke method defined by (6) is four. This
completes the proof.

3.2 Method 2

In this sub-section we derive another new fourth-omdetti-point iterative method for finding multiple
roots of a nonlinear equation. We construct the new methagibyg Thukral third-order method as our first
step and the second step is combination of Newton-Schroderpegintience, the second new method is
given as:

2(1 (%) (3 = 1(x)" (%)

o
21'(x,) =31 (%) /(%) (%) + (%) f( %) 2

Yo =%~



Thukral; BJMCS, 13(1): 1-10, 2016; Article no.BIMEZE20

v F(%)’ f(%) , 26
T P - (%) P (%) (f'(vn)J “

wheren e N , as beforex, is the initial guess and provided that the denominator ofi§2@&)nzero.

Theorem 2

Let a O 1 be a multiple root of multiplicitym of a sufficiently smooth functio/ 1< = for an
open intervall. If the initial guessX,; is sufficiently close tar, then the convergence order of method
defined by (26) is four.

Pr oof

Using the Taylor series expansion expressions given in the grideé theorem 1 and substituting them into
(25).

2(1(x) () - f(5)" (%)

2" (%) =31 (%) F'(%) (%) + (%) (%) N

Yo TA =X~

5
We obtain

) __(le(m+2)—2(m+])'lz') N -
O e () 0

Expanding f (yn), f'(yn) abouta, and substituting them in (26), we attain

(%) [f(y)j
=N "a-| p |- (29)
l /() = 1) 7"() L F (%)
Simplifying (29), we obtain
2 )T - 2
€1 = 2T, (29 % () 1) ¢. (30)

m? (m+2)°( m+2)

which indicates that the order of convergence of the newad8er-type method defined by (26) is four. This
completes the proof.

4 The Soleymani et al. [6] M ethods

We consider two fourth-order iterative methods presemtéé,7]. Since these methods are well established,
we state the particular expressions used to calculate the apptexsolution of the given nonlinear
equations and thus compare the efficiency of the new fauddr iterative methods.
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The first of fourth-order method presented by Soleymtal.g¢6], is expressed as

Zj f(x) f'(%) , (31)
31 (%) = f (%) F'(x)

ynzxn_(

4 1+(jj2(w”_1)2 (f(xn)], (32)

Xn+l:)g’1 (4_un_3vn) f'(Xn)
Where
u, =10 706,
(%)
Vn: f(yn) f"(zyn), (34)
t(vn)
w, =2, (35)
1-u,
The second of fourth-order method is by Soleymani.g7gland is given as
wex(2) f (%) (%) o)
” 3 F(x) - f(x) (%)

(%)

wheret, =X, — Y, and U, V,, W, are given by (33), (34), (35) respectively.

X1 = Vo= | 2°(17- 16w, + M)[(f(X")(Zf'(X”)”“f"(X”))} ;(\4—2)J (2-2y)" @7

5 Numerical Examples

We present some numerical results obtained by the neativiee methods (6), (26) to solve some nonlinear
equations with unknown multiplicityn. We have demonstrated the performance of the new four o
iterative methods by using ten particular nonlinear equatidhe. stability and consistency of the results are
determined by examining the convergence of the new Neratiethods. Consequently, the errors obtained
by each of the methods are displayed in the following talftesthermore, the errors displayed are of
absolute value and inappropriate approximations by the variotmdsehave been omitted in the following
tables. The numerical results listed in the tables wefenpeed on an algebraic system called Maple.
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The new fourth-order Schroder-type methods requires wictibn evaluations and has the order of
convergence four. We use definition 3 to evaluate theiency index of the new methods. Therefore, the
efficiency index of the new methods given by (6) and (26%2\3/_2, which is equivalent to the

Soleymani et al. [6] methods (32) and (37). The efficyeindex of the third-order method (25)

i‘/é =1.316 whereas the efficiency index of the second-order methpds given by§/§ =1.26(. We
observe that the efficiency index of the new fourth-ordethods has not been improved, however we have
constructed new simple and effective methods wherpaoad to the established fourth order methods [6,7].
The test functions, multiplicityn and their exact roofr are displayed in Table 1. The difference between
the roota and the approximatioix, for test functions with initial guesX, are displayed in Table 2. Table

2 shows the absolute errors obtained by each of iteratetbans described, we find that the new fourth
order method is producing better results than the estathlisie¢hods. In addition, the computational order
of convergence (COC) are displayed in Table 3. From tigleT3, we observe that the COC perfectly

coincides with the theoretical result. In addition, aperoximationm based on the present methods (5) are
displayed in Table 4. In Table 4 we display the approximatbtise multiplicitym obtained by the Thukral

third-order formula (5), we see a remarkable precisiotihe multiplicitym. Moreover, X, is calculated by
using the same total number of function evaluations fanathods.

Table 1. Test functions, multiplicity m, root @ and initial guess X,

Functions m Roots Initial guess
f(x)=(x6—1)m m=2 a=-1 X =-12
e )
f4(x):(exp(x2+7x 3() ) m=5 a =2.842438.. X =3
f,() :(cos( + x) =6 a =-0.739085.. X =-1

f (x) —(sm ])m m=7 a =1.404491.. X =1.7

+(X) =

f,(x) = ( & )§+1O)’“ m=8 a =1.239417.. % =1.5

7

fg(X) (6X5 + 5X4 4X3 + 3)(2 5t :) m=9 a=-1.57248.. X = -1.8
fy(x) = (tan(x) - & - 1" m=10 a =1.371045.. %, =1.2
flo(x):(ln(x2 +3x+5) - 2x+ 7)m m=11 a=5469012.. X =9

Table 2. Comparison of iterative methods

f. (25) (6) (26) (32 (37

f, 0.433e-5 0.410e-71 0.141e-79 0.777e-145 0.233e-37 .1536-83
f, 0.396e-13 0.493e-81 0.815e-219 0.271e-220 0.118e-19 0.241e-241
f, 0.21le-11 0.393e-76 0.399e-93 0.460e-147 0.411e-41 0.106e-60
f, 0.302e-17 0.307e-106 0.367e-142 0.478e-220 0.224e-6 0.395e-71
f 0.704¢21 0.129¢76 0.154¢17% 0.335¢18¢ 0.652¢79 0.322¢75

(4]
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Table 2 continued....

f, 0.245e-11 0.347e-56 0.232e-93 0.694e-115 0.925e-48 0.311e-56
f, 0.499¢3 0.773+64 0.235¢23 0.304¢89 0.582¢-2 -

f,  0.765e-6 0.927e-39 0.231e-46 0.417e-65 0.323e-16  3436-33
f,  0.310e-4 0.135e-26 0.176e-30 0.122e-47 0.269e-12 8806-15
f 0.219e-34 0.284e-40 0.554e-291 0.157e-190 0.138e-12 0.432e-125

10

Table 3. Performance of COC

f ©) (25 (6) (26) (32 (37
f, 1.9601 3.0000 4.0000 4.0000 3.9988 4.0000
f, 2.000( 2.988t¢ 4.000( 4.000( 4.000( 4.000(
f, 1.9998 2.9872 4.0000 4.0000 4.0000 4.0000
f, 2.000( 3.000( 4.000( 4.000( 4.000( 4.000(
f, 2.0000 2.9874 4.0000 4.0000 4.0000 4.0000
f, 1.9999 2.0768 4.0000 4.0000 4.0000 4.0000
f, 1.7889 3.0000 3.9997 4.0000 3.0373 -
fy 1.9840 3.0000 4.0000 4.0000 4.0000 4.0000
f, 1.8481 2.9994 4.0000 4.0000 3.9995 3.9999
flo 3.0000 3.0000 4.0000 4.0000 4.0000 4.0000
Table 4. Perfor mance of multiplicity m, based on the approximants of (25)

f ®) (25) (6) (26) (32 (37
f, 2.000( 2.000( 2.000( 2.000( 2.000( 2.000(
f, 3.0000 3.0000 3.0000 3.0000 3.0000 3.0000
f, 4.000( 4.000( 4.000( 4.000( 4.000( 4.000(
f, 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000
f, 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000
f, 7.0000 7.0000 7.0000 7.0000 7.0000 7.0000
f, 7.9835 8.0000 8.0000 8.0000 7.9999 -
fy 9.000( 9.000( 9.000( 9.000( 9.000( 9.000(
f, 9.9967 10.000 10.000 10.000 10.000 10.000
flo 11.00( 11.00( 11.00( 11.00( 11.00( 11.00(

6 Conclusion

In this work, we have presented two new multi-pdietative methods for solving nonlinear equatiorith
multiple roots. We have shown analytically and nrioadly, that the new Schroder-type iterative melho
converge to the order four. The objective for pntieg these new iterative methods were to estalaish
higher order of convergence method than the eggtiird-order methods [9]. Furthermore, we haventbu
that the results obtained by the new Schroder-typthods are producing better approximation of #hes
than the other well established methods, namelptieymani et al. methods (32) and (37). Finahg, hew
Schroder-type methods are simple, very effectivkrabust.
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