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Abstract

In this paper, the Boolean product of zero-one matrices are applied to obtain the truth values
of several propositions with logical connectives. The propositional matrices are given in relation
to the matrix algebric properties. We state and prove a theorem for which a given conditional
connetives is a tautology.
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1 Introduction

Boolean algebra provides the operator and rules for working with the set of element 0 and 1 whose
product with respect to the binary operations of AND and OR denoted by ∧ and ∨ respectively
are defined between only pairs of elements as

aij =

{
1 if i = j = 1
0 otherwise

(1.1)

and

bij =

{
1 if i or j = 1
0 otherwise

(1.2)

various application abound in real life associated with the used of Boolean product to determine
the truth outcomes and values of event [1, 2]. The study of combinatorial circuits for current flow,
computer informatics and logical connectives truth values table are prominent in their usage [3, 4, 5].

Research interest is to obtain a propositional matrix arising from the truth value or symbolic tables
of proposition and thereby using the matrix properties to determine the truth value of propositions
with logical connectives. So far researches and illustration known had been on two propositions p
and q [4]. In this work therefore, the Boolean products of zero-one matrix are applied to obtain
propositional matrices and their truth values for several propositions with logical connectives also
the theorem for which a conditional connectives is a tautology is formulated and proved.

2 Propositional Matrix/Results

Sequel to basic definitions and notations, let p, q and r be propositions with assigned truth values p =
(1 1 1 1 0 0 0 0), q = (1 1 0 0 1 1 0 0) and r = (1 0 1 0 1 0 1 0)
and p ∧ q, p ∨ q be as defined AND and OR in symbolic logic respectively.

Definition 2.1. Propositional matrix B for any logical connectives consists of the Boolean product
of the symbols of each proposition such that bij represents the product of ith−symbol of p and the
jth−symbol of q

B =


b11 b12 b13 b14
b21 b22 b23 b24
b31 b32 b33 b34
b41 b42 b43 b44

 (2.1)

Thus the diagonal entries of the matrix B denoted by T (B) = (b11, b22, b33, b44) represent the
truth values of the components propositions with logical connectives in the event of the propositions,
we have that if p = (1 1 0 0) and q = (1 0 1 0) such that

B1 = p ∧ q = (1 1 0 0) ∧ (1 0 1 0)

=


1 0 1 0
1 0 1 0
0 0 0 0
0 0 0 0

 (2.2)

and

B2 = p ∨ q =


1 1 1 1
1 1 1 1
1 0 1 0
1 0 1 0

 (2.3)
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then the resulting truth value will be

T (B1) = (1 0 0 0) (2.4)

and

T (B2) = (1 1 1 0) (2.5)

B1 and B2 are called propositional matrices. In this paper, the results above are extended to several
propositions, showing the distributive law of disjunction over conjunction with logically equivalent
propositions.

Consider the proposition A1 = p ∧ q ∧ r and A2 = p ∨ q ∨ r the truth values of the combinational
connectives A1 and A2 written T (A1) and T (A2) are obtained by applying the algebraic properties
of associativity, commutativity and distributive laws of the symbols. Thus for
p = (1 1 1 1 0 0 0 0), q ∧ r = (1 0 1 0 1 0 1 0) or p ∧
q = (1 1 0 0 0 0 0 0), r = (1 0 1 0 1 0 1 0), the propositional matrix for A1

becomes

A1 =



1 0 0 0 1 0 0 0
1 0 0 0 1 0 0 0
1 0 0 0 1 0 0 0
1 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0


(2.6)

such that

T (A1) = (1 0 0 0 0 0 0 0) (2.7)

Similarily,

p ∨ q = (1 1 1 1 1 1 0 0) r = (1 0 1 0 1 0 1 0)

A2 =



1 1 1 1 1 1 1 0
1 1 1 1 1 1 1 0
1 1 1 1 1 1 1 0
1 1 1 1 1 1 1 0
1 1 1 1 1 1 1 0
1 1 1 1 1 1 1 0
1 0 1 0 1 0 1 0
1 0 1 0 1 0 1 0


(2.8)

and

T (A2) = (1 1 1 1 1 1 1 0) (2.9)

Let A3 be the logical equivalent proposition p ∨ (q ∧ r)⇔ (p ∨ q) ∧ (p ∨ r). Using the propositional
matrix of Boolean product, the truth values for the biconditional connectives is derived where
p ∨ q = (1 1 1 1 1 1 0 0) and
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p ∨ r = (1 1 1 1 1 0 1 0)

A3 =



1 1 1 1 1 0 1 0
1 1 1 1 1 0 1 0
1 1 1 1 1 0 1 0
1 1 1 1 1 0 1 0
1 1 1 1 1 0 1 0
1 1 1 1 1 0 1 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0


(2.10)

such that

T (A3) = (1 1 1 1 1 0 0 0) (2.11)

On the other hand, using p = (1 1 1 1 0 0 0 0) and q ∧ r = (1 0 0 0 1 0 0 0)

A′3 =



1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 0 0 0 1 0 0 0
1 0 0 0 1 0 0 0
1 0 0 0 1 0 0 0
1 0 0 0 1 0 0 0


(2.12)

and

T (A′3) = (1 1 1 1 1 0 0 0) (2.13)

hence p ∨ (q ∧ r)⇔ (p ∨ q) ∧ (p ∨ r).

Lemma 2.1. : Let p, q and r be propositions, the conditional connectives of the conjunction over
the disconjunction of p, q and r is a tautology.

Proof:

Let (p ∧ q ∧ r) → (p ∨ q ∨ r)

⇔ −(p ∧ q ∧ r) ∨ (p ∨ q ∨ r)

⇔ (−p ∨ −q ∨ −r) ∨ (p ∨ q ∨ r)

⇔ (−p ∨ p) ∨ (−q ∨ q) ∨ (−r ∨ r)

⇔ T ∨ T ∨ T

⇔ T.

Using propositional matrices of A1 and A2, let A1 → A2, then T (A1) → T (A2) where T (A1) and
T (A2) are as in equation (2.7) and (2.9). The resulting truth values is (1 1 1 1 1 1 1 1 ) =
T .

Theorem 2.2. Let Pi, i = 1, 2, ..., n be propositions such that
∏
i

∧Pi and
∏
i

∨Pi denote the

conjunction and disconjunction of several propositions. Then
∏
i

∧Pi →
∏
i

∨Pi is a tautology.

Proof: Let B(bij) and C(cij) be propositional matrices of the conjunction and disconjunction
defined as

B = bij =

{
1 if Pi ∩ Pj = 1
0 otherwise
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and

C = cij =

{
0 if Pi ∩ Pj = 0
1 otherwise i, j = 1, 2, ..., n

where Pi ∩ Pj indicates the intersection of the truth values of Pi and Pj at the (i, j)th

symbols. Then T (B) = (1 0 0 . . . 0) and T (C) = (1 1 1 . . . 1 0) such that the
2n×2n propositional matrix A(aij) becomes a unitary matrix, hence T (a11 a12 . . . a1n) =
(1 1 1 . . . 1 1).

3 Conclusion

The propositional matrix and its truth values presented and the theorem given, lay a foundation
for further research and application in any area of relevances.
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