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Abstract

A non-linear mathematical model of typhoid fever diseases incorporating protection is hereby
considered to study the global stability of equilibrium points. To study the global stability of
the disease free equilibrium point and endemic equilibrium point, the method by Castillo-Chavez
and a suitable Lyapunov function are used respectively. The disease free equilibrium point was
found not to be globally asymptotically stable while the endemic equilibrium point is globally
asymptotically stable. This implies that the disease transmission can be kept quiet low or
manageable with minimal deaths in the presence of protection.
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1 Introduction

Typhoid fever is a bacterial infection that is transmitted through food and water contaminated
with faeces and urine of an infected patient or a carrier [1]. Signs and symptoms includes; sustained
fever, poor appetite, vomiting , severe headache and fatigue. Incubation period for typhoid fever
is about 7-14 days. Typhoid fever is an underestimated global health problem whose impact is
difficult to estimate because the clinical picture is confused with other infections. An estimated 17
million cases of typhoid were reported worldwide resulting in 0.6 million deaths annually [2]. A
mathematical model of typhoid fever disease incorporating protection against infection is presented
by [3]. The local stability of the disease free equilibrium (DFE) and disease endemic equilibrium
(DEE) points were analysed and were found to be locally asymptotically stable.

The stability of an equilibrium point determines whether or not, the solutions nearby the equilibrium
point remains nearby, gets closer or get further away. Thus, an equilibrium point can be categorized
as either stable or unstable or a saddle point [4].

The asymptotic stability regions of the equilibrium point of models involving temporary immunity,
disease related fatalities, carriers, migration,dissimilar interacting groups and transmission by vectors
were determined [5, 6]. Lyapunov method is successfully used to prove the global stability of
endemic equilibrium. This method consist of finding one function called the Lyapunov function
that is positive definite and its derivative along the trajectories is negative. Different Lyapunov
functions[7, 8] are constructed for SIR, SIS and SIRS using combinations of suitable composite
quadratic, simple quadratic and logarithmic function and presented. Global stability conditions for
DFE when R0 < 1 are presented by [9]. According to [10], The disease free equilibrium is globally
asymptotically stable when the reproduction number is less than unity and the endemic equilibrium
is globally asymptotically stable when the reproduction number is greater than unity.

In this work, the global stability of the DFE and DEE of the model in [3] are analyzed.

2 The Model Preliminaries and Analysis

The model herewith considered was formulated in [3] and is defined as

dP

dt
= αΛ− (γ + µ)P

dS

dt
= (1− α)Λ + γP − (λ+ µ)S

dI

dt
= λS − (δ + β + µ)I

dT

dt
= βI − µT

(2.1)

N(t) = P (t) + S(t) + I(t) + T (t) (2.2)

where S is the class of susceptible individuals, P is the class of protected individuals , I is the
class of infected individuals and T the class of treated individuals. αΛ is the recruitment rate into
the class of individuals protected against typhoid, (1−α)Λ is the recruitment rate into the class of
individuals susceptible to typhoid, µ is the natural mortality rate, δ is the disease induced mortality
rate, β is the treatment rate. All population compartments are non negative ∀t > 0 in the feasible
region Γ where S(t), P (t), I(t), T (t)∈Γ ⊂ R4

+ Since we are dealing with a population. It can be
shown that all the solutions are bounded in Γ, ∀t > 0 such that 0 ≤ N ≤ Λ

µ
. Thus the model is
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epidemiologically well posed in the region Γ and can be analysed [3]. The force of infection is given
by

λ =
πθ(1− ϑ)I

N
. (2.3)

where π be defined as the probability rate of acquiring typhoid fever disease, θ is the contact rate
of infection and ϑ is the probability of success of protection against typhoid fever disease and the
effective reproduction number is

R0 =
πθ(1− ϑ)

µ+ δ + β
(2.4)

2.1 Disease free equilibrium point and endemic equilibrium point

At the DFE we let P = 0, I = 0 and T = 0, solving Equation 2.1 for S we obtain

S =
Λ

µ
. (2.5)

The disease-free equilibrium point E0 is given by

E0 = (0,
Λ

µ
, 0, 0). (2.6)

To calculate the endemic equilibrium point, we set P, S, I, T not equal to zero.

P ∗ =
αΛ

µ+ γ

S∗ =
(π(−1+ϑ)θ(αΛµ+I(β+µ)(γ+µ)

µ(γ+µ)(β+δ+π(−1+ϑ)θ+µ)
)(µ+ δ + β)

πθ(1− ϑ)

I∗ =
Λ(γ(β + δ + π(−1 + ϑ)θ) + β + γ + δ − π(−1 + α)(−1 + ϑ)θ)µ+ µ2

(δ + π(−1 + ϑ)θ)(γ + µ)(β + δ + µ)

T ∗ =
βΛ(γ(β + δ + π(−1 + ϑ)θ) + β + γ + δ − π(−1 + α)(−1 + ϑ)θ)µ+ µ2

(δ + π(−1 + ϑ)θ)(γ + µ)(β + δ + µ)µ
(2.7)

since N is given by

N =
π(−1 + ϑ)θ(αΛµ+ I(β + µ)(γ + µ)

µ(γ + µ)(β + δ + π(−1 + ϑ)θ + µ

Upon simplification I∗ becomes

I∗ =
(R0 − 1)[(Λ(β + δ + µ)( γ

β+δ
+ µ

(β+γ+δ)(1−α)
)− Λµ2

β+δ+µ
]

δ − πθ(1− ϑ)(γ + µ)

(2.8)

I∗ > 0 provided that R0 > 1 with (Λ(β + δ + µ)( γ
β+δ

+ µ
(β+γ+δ)(1−α)

) > Λµ2

β+δ+µ
and δ > πθ(1 −

ϑ)(γ+µ), implying that death due to typhoid fever disease decreases with an increase in protection.
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2.2 Global stability of the disease-free equilibrium (DFE)

For global stability of the DFE, the technique used by [9] was employed. There are two conditions
that if met, the global asymptotic stability of the disease free equilibrium point is guaranteed.
Equation (2.1) may be written in the form

dX

dt
= K(X,Z)

dZ

dt
= G(X,Z), G(X, 0) = 0 (2.9)

where X ∈ R3 and X = {S, P, T} denotes the number of uninfected individuals and Z ∈ R1 where
Z = {I} denotes the number of infected individuals . EO = (Λ

µ
, 0, 0, 0) denotes the disease free

equilibrium point of this system where

X∗ = (
Λ

µ
)

conditions (2.10) may be met to guarantee global asymptotic stability

dX

dt
= K(X, 0), X∗is globally asymptotic stable

G(X,Z) = AZ − Ĝ(X,Z), Ĝ(X,Z) ≥ 0∀(X,Z) ∈ Γ (2.10)

where A = DzG(X∗, 0) is an M matrix and Γ is the region where the model has biological meaning.

Theorem

If system (2.1) satisfies conditions (2.10), then the fixed point E0 = (X∗, 0, 0, 0) is a globally
asymptotically stable equilibrium of the system (2.1) provided that R0 < 1.

Proof
Consider K(X, 0) = (Λ− µS) and G(X,Z) = AZ − Ĝ(X,Z) where

A = −(δ + β + µ). (2.11)

and

Ĝ(X,Z) = −πθ(1− ϑ)I

N
S. (2.12)

Since all the conditions in Equation (2.10) are not satisfied because Ĝ(X,Z) < 0, the DFE E0 may
not be globally asymptotically stable, implying that we anticipate an outbreak when particular
conditions which favour the outbreak of the disease are prevailing.

2.3 Global stability of the endemic equilibrium point (EEP)

The global stability of the endemic equilibrium may be obtained by means of Lyapunov’s direct
method and LaSalle’s invariance principle [7]. Consider the non-linear Lyapunov function

L : (S, P, I, T ) ∈ Γ ⊂ R4
+ : S, P, I, T > 0 (2.13)

where

L : (S, P, I, T ) = λ(S − S∗ − S∗ log
S

S∗ ) + λ(P − P ∗ − P ∗ log
P

P ∗ ) +

+λ(I − I∗ − I∗ log
I

I∗
) + λ(T − T ∗ − T ∗ log

T

T ∗ )

(2.14)
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where L is C1 in the interior of Γ. E∗ is the global minimum of L on Γ and L : (S, P, I, R) = 0.
The time derivative of L is given by

dL

dt
= L̇ = λ(1− S∗

S
)
dS

dt
+ λ(1− P ∗

P
)
dP

dt
+ λ(1− I∗

I
)
dI

dt
+ λ(1− T ∗

T
)
dT

dt
(2.15)

with the derivatives of Equation S, P, I, T defined in Equation (2.1) and by using αΛ = (γ + µ)P ∗,
(1− α)Λ = −γP ∗ + (λ+ µ)S∗, λS∗ = (δ + β + µ)I∗, βI = µT ∗ into Equation (2.15) we obtain

L̇ = −λ(
S − S∗

S
)[(µ+ λ)(S − S∗) + γ(P − P ∗)]− λ(

P − P ∗

P
)[(γ + µ)(P − P ∗)]

−λ(
I − I∗

I
)[(µ+ β)(I − I∗)]− λ(

T − T ∗

T
)[(µ)(T − T ∗)]

(2.16)

Hence L̇ < 0. We see that L̇ = 0 iff S = S∗, P = P ∗, I = I∗ and T = T ∗. Thus the largest compact
invariant set in {S, P, I, T} ∈ Γ : L̇ = 0 is the Singleton E∗, where E∗ is the endemic equilibrium.
Thus E∗ is globally asymptotically stable in the interior of the region Γ. Mathematically, we have
shown that protection produces desired results in terms of disease intervention.

3 Discussion

The global stability of the disease free equilibrium and the disease endemic equilibrium point was
carried out. From the analysis, the DFE E0 is not globally asymptotically stable, implying that
we anticipate an outbreak when particular conditions which favour the outbreak of the disease are
prevailing, or when people stop embracing protective measures. By use of a suitable logarithmic
Lyapunov function, the endemic state is shown to be globally asymptotically stable. This implies
that disease transmission levels can be kept quiet low or manageable with minimal deaths in the
presence of protection.

4 Conclusion

We conclude that typhoid fever disease, can be effectively controlled from spreading in a given
population by embracing protective measures such as drinking clean water, improved sanitation and
receiving proper treatment for those already infected among others. Death due to typhoid fever
disease decreases with an increase in protection because there will be a decrease in the number of
infected individuals.
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