
British Journal of Applied Science & Technology

21(3): 1-13, 2017; Article no.BJAST.32806
ISSN: 2231-0843, NLM ID: 101664541

Existence, Uniqueness and Blow-up Result of Solutions
for an Evolution p(x)−laplacian Equation

Hamid El Ouardi1∗

1Research laboratory in Engineering (LRI), University Hassan II of Casablanca, National Higher
School of Electricity and Mechanics, Equipe Sécurité, Systèmes & Modélisations. ENSEM, BP.
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Abstract
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1 INTRODUCTION

Let Ω ⊂ RN (N ≥ 1) be a bounded Lipshitz
domain and 0 < T < ∞. It will be assumed
throughout this paper that p(x) is continuous
function defined in Ω with logarithmic module of
continuity :

2 < p− = inf
Ω
p(x) ≤ p(x) ≤ p+ = sup

Ω

p(x) < ∞,

|p(x)− p(y)| ≤ − C

log |x− y| , for any x, y ∈ Ω

with |x− y| < 1

2
. (1.1)

In this paper, we consider the following p(x) −
laplacian equation :


a(x) ∂u

∂t
−∆p(x)u = f(x, u), in Ω× (0, T ),

u = 0, on ∂Ω× (0, T ),
u(x, 0) = u0(x), in Ω,

(1.2)

where p(x) ∈ C(Ω) is a function. The operator
−∆p(x)u = − div

(
|∇u|p(x)−2 ∇u

)
is called

p(x)−Laplacian, which will be reduced to the
p− Laplacian when p(x) = p a constant.

In the case when a(x) = 1 and p(x) is
constant, there have been many results about
the existence, uniqueness, and some other
properties of the solutions to problem (1.2), we
refer to the readers to the bibliography given
in [1, 2, 3] (see also Refs.[4, 5, 6, 7]), and the
references therein. Recently, [8] study the
equation the p(x)− laplacian equation

a(x)
∂u

∂t
= div(um−1 |Du|λ−1 Du),

where λ > 0, m+λ−2 > 0 and a(x) is a positive
continuous function. They examine under which
conditions on behavior of a(x), corresponding
nonnegative solutions of the Cauchy problems
possess the finite speed of propagations or
interface blow-up phenomena.

In recent years, the research of nonlinear
problems with variable exponent growth
conditions has been an interesting topic.
p(·)-growth problems can be regarded as a
kind of nonstandard growth problems and
these problems possess very complicated
nonlinearities, for instance, the p(x)-Laplacian
operator is inhomogeneous. And these
problems have many important applications
in nonlinear elastic, electrorheological fluids
and image restoration. The reader
can find in [9, 10, 11, 12, 13, 14] (see also
Refs.[15, 16, 17, 18, 19, 20, 21]), several models in
mathematical physics where this class of problem
appears.

In this paper, we consider the existence and
uniqueness for the problem of the type (1.2)
under some assumptions. The proof consists of
two steps. First, we prove that the approximating
problem admits a global solution; then we do
some uniform estimates for these solutions.
We mainly use skills of inequality estimation
and the method of approximation solutions.
By a standard limiting process, we obtain the
existence to problem of the type (1.2).

The outline of this paper is the following: In
Section 2, we introduce some basic Lebesgue
and Sobolev spaces and state our main
theorems. In Section 3, we give the existence
and uniqueness of weak solutions. In section 4,
the blow-up results will be proved. In section 5,
we show some numerical experiments.

2 BASIC SPACES AND THE
MAIN RESULTS

To consider problems with variable exponents,
one needs the basic theory of spaces Lp(x)(Ω)
and W 1,p(x)(Ω). For the convenience of readers,
let us review them briefly here. The détails and
more properties of variable-exponent Lebesgue-
Sobolev spaces can be found in [2, 22] .

Let p(x) ∈ C(Ω). When p− > 1, one can
introduce the variable-exponent Lebesgue space

2



Ouardi; BJAST, 21(3): 1-13, 2017; Article no.BJAST.32806

Lp(x)(Ω) =

{
u : Ω → R; u is measurable and

∫
Ω

|u|p(x) dx < ∞
}
,

endowed with the Luxemburg norm.

∥w∥p(x) = inf

{
λ > 0 :

∫
Ω

∣∣∣w
λ

∣∣∣p(x) dx ≤ 1

}
.

The conjugate space is Lq(x)(Ω), with 1
p(x)

+ 1
q(x)

= 1 ∀x ∈ Ω.

As in the case of a constant exponent, set

W 1,p(x)(Ω) =
{
u(x) ∈ Lp(x)(Ω) : |∇u|p(x) ∈ L1(Ω)

}
.

endowed with the norm
∥u∥1,p(x) = ∥u∥p(x) + ∥∇u∥p(x) .

Similarly we also denote by W
1,p(x)
0 (Ω) the closure of C∞

0 (Ω) in W 1,p(x)(Ω) and
(
W

1,p(x)
0 (Ω)

)′
is the

dual of W 1,p(x)
0 (Ω) with respect to the inner product in L2(Ω).

In Propositions 2.1-2.3, we describe some results about the Luxembourg norm.

Proposition 2.1. ([2, 22]) (1) The space
(
Lp(x)(Ω), ∥.∥p(x)

)
is a separable, uniformly convex Banach

space, and its conjugate space is Lq(x)(Ω), where 1
p(x)

+ 1
q(x)

= 1 ∀x ∈ Ω. For any u ∈ Lp(x)(Ω) and
v ∈ Lq(x)(Ω), we have the following Hölder-type inequality :∣∣∣∣∫

Ω

uvdx

∣∣∣∣ ≤ (
1

p−
+

1

q−

)
∥u∥p(x) ∥v∥q(x) ≤ 2 ∥u∥p(x) ∥v∥q(x) .

(2) If r1(x) ≤ r2(x) for any x ∈ Ω, the imbedding Lr2(x)(Ω) ↩→ Lr1(x)(Ω) is continuous, the norm of
the imbedding does not exceed |Ω|+ 1.

Proposition 2.2. [23] If we denote

ρ(w) =

∫
Ω

|w|r(x) dx, ∀w ∈ Lr(x)(Ω),

then

(1) |w|r(x) < 1 (= 1;> 1) ⇔ ρ(w) < 1 (= 1;> 1);

(2) |w|r(x) > 1 ⇒ |w|r
−

r(x) ≤ ρ(w) ≤ |w|r
+

r(x) ; |w|r(x) < 1 ⇒ |w|r
+

r(x) ≤ ρ(w) ≤ |w|r
−

r(x) ;
(3) |w|r(x) → 0 ⇔ ρ(w) → 0; |w|r(x) → ∞ ⇔ ρ(w) → ∞.

Proposition 2.3. [22] For u ∈ W
1,p(x)
0 (Ω), there exists a constant C = C(p, |Ω|) > 0, such that

∥u∥p(x) ≤ C ∥▽u∥p(x) ,

This implies that ∥▽u∥p(x) and ∥u∥1,p(x) are equivalent norms of W 1,p(x)
0 (Ω).

Problem (1.2) does not admit classical solutions in general. So, we introduce weak solutions in the
following sence.
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Definition 2.1. A function u is said to be a weak solution of Problem (1.2), if the following conditions
are satisfied :

(1) u ∈ L∞(0, T,W
1,p(x)
0 (Ω)) ∩ C(0, T ;L2(Ω)), ∂u

∂t
∈ L∞(0, T,W

−1,p′(x)
0 (Ω)) such that :

(2) For any ϕ ∈ C∞
0 (QT ) and QT = Ω× (0, T )

T∫
0

∫
Ω

(a(x)uϕt − |∇u|p(x)−2 ∇u∇ϕ− f(x, u)ϕ)dxdt = 0

(3) u(x, 0) = u0(x).

In the study of the global existence of solutions, we need the following hypotheses (H):
(H1) u0 ∈ L∞(Ω) ∩W

1,p(x)
0 (Ω)

(H2) 0 < C ≤ a(x) ∈ L∞(Ω)

(H3) f(x, s) ∈ C1(Ω× R).

3 MAIN RESULTS

In this paper, we shall denote by c, Ci differents constants, depending on pi(x), T,Ω, but not on n,
which may vary from line to line. Sometimes we shall refer to a constant depending on specific
parameters Ci(T ), etc.

Our main existence result is the following:

Theorem 3.1. Let (H1)-(H3) hold. Then problem (1.2) admits a unique solution u ∈ C([0, T ) ;L2(Ω)).
Moreover, the mapping u0 → u(t) is continuous in L2(Ω).

Proof of the main results.

3.1 Existence

We will semi-discrete (1.2) in time and solve the corresponding elliptic problem. Based on the
semi-discrete problem, we construct the corresponding approximate solutions. The key procedure
is to establish necessary a priori estimates for finding the limit of the approximate solutions via a
compactess argument.

We first consider the discrete scheme (3.1)

a(x)
un − un−1

τ
−∆p(x)u

n = f(x, un−1) in Ω, (3.1)

un = 0 on ∂Ω,

u0 = u0 in Ω,

where Nτ = T and T is a fixed positive real, and 1 ≤ n ≤ N .

Lemma 3.2. For any fixed n, if un−1 ∈ W
1,p(x)
0 (Ω) ∩ L∞(Ω), Problem (3.1) admits a weak solution

un ∈ W
1,p(x)
0 (Ω) ∩ L∞(Ω).
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Proof. On the space W
1,p(x)
0 (Ω), we consider the functional

Φ(u) =

∫
Ω

1

p(x)
|∇u|p(x) dx+

1

2τ

∫
Ω

a(x) |u|2 dx−
∫
Ω

gudx.

where g ∈ L∞(Ω) is a known function. Using Young’s inequality and Proposition 2.1, there exist
constants C1, C2 > 0, such that

Φ(u) ≥ 1

p+

∫
Ω

|∇u|p(x) dx− C2 ∥g∥2L2 ≥ 1

p+
∥u∥p

−

1,p(x) − C2 ∥g∥2L2 ;

hence Φ(u) → ∞, as ∥u∥1,p(x) → +∞. Since the norm is lower semi-continuous and
∫
Ω
gudx is

continuous functional, Φ(u) is weakly lower semi-continuous on W
1,p(x)
0 (Ω) and satisfy the coercive

condition. From [24] we conclude that there exists u∗ ∈ W
1,p(x)
0 (Ω), such that

Φ(u∗) = inf
u∈W

1,p(x)
0 (Ω)

Φ(u)

and u∗ is the weak solutions of the Euler equation corresponding to Φ(u),

a(x)
u

τ
−△p(x)u = g.

Choosing g = f(x, un−1) + a(x) 1
τ
un−1, we obtain a weak solution un of (3.1).

a(x)
u1 − u0

τ
−∆p(x)u

1 = f(x, u0). (3.2)

Since |f(x, u0)| ≤ M , we may prove by induction that (3.1) has a solution un in L∞(Ω). We put
u1 := w and for any integer k > 0, we may take (w −Mτ)k+ as a test function in (3.2) to get∫

Ω

1

τ
(w −Mτ)k+1

+ dx+ k

∫
Ω

∣∣∣∇(w −Mτ)
p(x)
+

∣∣∣ (w −Mτ)k−1
+ dx

=

∫
Ω

1

τ
(w −Mτ)k+u

0dx+

∫
Ω

f(x, u0)(w −Mτ)k+dx

By the Hôlder inequality and |f(x, u0)| ≤ M , we have∫
Ω

(w −Mτ)k+1
+ dx ≤

(∫
Ω

(w −Mτ)k+1
+

(
u0 +Mτ

)
dx

)

≤
(∫

Ω

(w −Mτ)k+1
+ dx

) k
k+1

(∫ k+1

Ω

(
u0 +Mτ

)k+1
dx

) 1
k+1

We deduce ∥(w −Mτ)+∥Lk+1(Ω) ≤
∥∥u0 +Mτ

∥∥
Lk+1(Ω)

.

Letting k → ∞, we get (w)+ ≤
∥∥u0

∥∥
L∞(Ω)

+ 2Mτ. Consider −w, we get easily that
(w)− ≥ −

∥∥u0
∥∥
L∞(Ω)

− 2Mτ, i.e.
∥∥u1

∥∥
L∞(Ω)

≤
∥∥u0

∥∥
L∞(Ω)

+ 2Mτ and if we choose τ such that
τ ≤ 1

2M
, we obtain un ∈ L∞(Ω)..

This completes the proof of lemma 3.3.
Now, we define the approximate solutions as (u)τ , (ũ)τ set by : for all n ∈ {1, ..., N} .

∀t ∈ [(n− 1)τ, nτ ]


uτ (t) = un,

ũτ (t) =
(t−(n−1)τ)

τ
(un − un−1) + un−1

5
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are well defined and satisfied in addition

∂ũτ

∂t
−∆p(x)

uτ = f(x, uτ (.− τ)) (3.3)

We first establish some energy estimates of uτ , ũτ .

We need several lemmas to complete the proof of Theorem 3.2.

Lemma 3.3. There exists a positive constant C(T, u0) such that, for all n = 1, . . . , N

un ∈ L∞(0, T ;L∞(Ω)) (3.4)

uτ , ũτ are bounded in Lp(0, T ;W
1,p(x)
0 (Ω)) ∩ L∞(0, T ;L2(Ω)), (3.5)

∂ũτ

∂t
is bounded in L2(QT ) (3.6)

and
uτ , ũτ are bounded in L∞(0, T ;W 1,p

0 (Ω)). (3.7)

Proof. (a) By lemma 3.2, for any n ∈ N, un is bounded; whence (3.4)
(b) Multiplying (3.1) by τun, summing from n = 1 to N and integrating over Ω we obtain

τ
N∑

n=1

∫
Ω

a(x)

(
un − un−1

τ

)
undx+ τ

N∑
n=1

∫
Ω

|∇un|p(x) dx = τ
N∑

n=1

∫
Ω

f(x, un−1)undx. (3.8)

By Young Inequality, for ϵ > 0 small, there exists Cϵ(T ) such that

τ

N∑
n=1

∫
Ω

f(x, un−1)undx ≤ ϵτ

N∑
n=1

∫
Ω

|∇un|p(x) dx+ Cϵ(T ). (3.9)

With the aid of the identity 2α(α− β) = α2 − β2 + (α− β)2, we get

τ

N∑
n=1

∫
Ω

a(x)

(
un − un−1

τ

)
undx =

1

2

N∑
n=1

∫
Ω

a(x)
(
|un|2 −

∣∣un−1
∣∣2 + ∣∣un − un−1

∣∣2) dx

=
1

2

N∑
n=1

∫
Ω

a(x)
(
|un|2 −

∣∣un−1
∣∣2) dx+

1

2

∫
Ω

a(x)
∣∣∣uN

∣∣∣2 dx− 1

2

∫
Ω

a(x) |u0|2 dx.

With the above estimates, we get (3.5).

(c) Multiplying the equation (3.1) by un − un−1and summing from n = 1 to N , wet get

τ

N∑
n=1

∫
Ω

a(x)

(
un − un−1

τ

)2

dx+

N∑
n=1

∫
Ω

|∇un|p(x)−2 ∇un.∇
(
un − un−1) dx

=

N∑
n=1

∫
Ω

f(x, un−1)
(
un − un−1) dx.

6
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By Young Inequality, we get

N∑
n=1

∫
Ω

f(x, un−1)
(
un − un−1) dx ≤ Cϵ(T ) +

τ

2

N∑
n=1

∫
Ω

(
un − un−1

τ

)2

dx (3.10)

From the convexity of the expression
∫
Ω
|∇w|p(x) dx, we get the following inequality:

∫
Ω

1

p(x)
|∇un|p(x) dx−

∫
Ω

1

p(x)

∣∣∇un−1
∣∣p(x) dx ≤

∫
Ω

|∇un|p(x)−2 ∇un.∇
(
un − un−1) dx (3.11)

which imply with (3.9) and (3.10) that

τ

2

N∑
n=1

∫
Ω

a(x)

(
un − un−1

τ

)2

dx+

∫
Ω

1

p(x)

∣∣∣∇uN
∣∣∣p(x)i dx ≤ C. (3.12)

Thus we obtain (
∂ũτ

∂t

)
τ

is bounded in L2(QT ) uniformly in τ, (3.13)

(uτ ) and (ũτ ) are bounded in L∞(0, T ;W
1,p(x)
0 (Ω)) uniformly in τ. (3.15)

By lemma 3.4, there exists Mi > 0 independent of τ such that

∥uτ − ũτ∥L∞(0,T ;L2(Ω)) ≤ max
1≤n≤N

∥∥un − un−1
∥∥
L2(Ω)

≤ M
√
τ . (3.16)

Therefore, taking τ → 0+, and up to subsequence, wet get that there exists u, v ∈ L∞(0, T ;W
1,p(x)
0 (Ω)∩

L∞(Ω)) such that ∂u
∂t

∈ L2(QT ),

uτ
∗→ u in L∞(0, T ;W

1,p(x)
0 (Ω) ∩ L∞(Ω)) and ũτ

∗→ v in L∞(0, T ;W
1,p(x)
0 (Ω) ∩ L∞(Ω)) (3.17)

∂ũτ

∂t

weak→ ∂u

∂t
in L2(QT ). (3.18)

From (3.16), it follows that u = v. From (3.17), we get that

uτ , ũτ → u in Lq(0, T ;W
1,p(x)
0 (Ω)), ∀q ≥ 1. (3.19)

By Aubin-Simon’s compactness results [25], we have

ũτ → u ∈ C(0, T ;L2(Ω)). (3.20)

Now, multiplying (3.1) by uτ − u and using (3.11) and (3.16), we get by straightforward calculations :∫ T

0

∫
Ω

a(x)

(
∂ũτ

∂t
− ∂u

∂t

)
(ũτ − u)dxdt−

∫ T

0

< △p(x)uτ , uτ − u > dt

=

∫ T

0

∫
Ω

f(x, (uτ (.− τ))dxdt+ oτ (1),

7
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where oτ (1) → 0 as τ → 0+.

Thus, we get that

1

2

∫
Ω

a(x) |ũτ (T )− u(T )|2 dx−
∫ T

0

< △p(x)uτ −△p(x)u, uτ − u > dt

≤
∫ T

0

∫
Ω

f(x, uτ (.− τ))dxdt+ oτ (1), (3.21)

and from (3.17) we have thus,

uτ → u in Lp(x)(0, T ;W
1,p(x)
0 (Ω)), as τ → 0+

and consequently by the same as that in [8]

△p(x)uτ → △p(x)u in Lp(x)
′

(0, T ;W−1,p(x)
′

(Ω)).

Therefore, u satisfies (1.2).

3.2 Uniqueness
Theorem 3.4. Let (H1) to (H3) be satisfied. Then problem (1.2) has a unique solution u in QT .

Proof. Let u and v be solutions of (1.2), we have :∫ T

0

∫
Ω

a(x)
∂ (u− v)

∂t
(u− v) dxdt−

∫ T

0

< △p(x)u−△p(x)v, u− v > dt

=

∫ T

0

∫
Ω

(f(x, u)− f(x, v)) (u− v) dxdt,

Since f(x, .) is locally lipschitz uniformly in Ω, the difference w = u− v satisfies

1

2
C |w|2L2(Ω) +

∫ T

0

< △p(x)u−△p(x)v, w > dt ≤ c

∫ T

0

∫
Ω

|w|2 dt,

we observe that w → −△p(x)w is monotone from W
1,p(x)
0 (Ω) to W−1,p(x)′(Ω)

|w|2 ≤ 2c

∫ T

0

|w|2 dt. (3.22)

We finally deduce from Gronwall’s lemma,

|w|2 ≤ |w(0)|2 exp(2cT ), ∀t ∈ (0, T ).

Thus, we deduce that u = v.

4 BLOW-UP RESULTS

In this section, we shall investigate the blow-up properties of solutions to problem (1.2), using energy
methods. To this end, we consider the following hypotheses on the data.

(H4) u0 ∈ W
1,p(.)
0 (Ω) ∩ Lp(.)(Ω) such that

∫
Ω
F (u0(x))dx−

∫
Ω

1
p(x)

|∇u0|p(x) dx ≥ 0.

8



Ouardi; BJAST, 21(3): 1-13, 2017; Article no.BJAST.32806

(H5) f(x, u) = h(u) and and h is such that :

|u|α ≤ αF (u) ≤ uf(u), α > max(p+, 2). (4.0)

Throughout this section, we define for t ≥ 0,

E(t) =
∫
Ω

1
p(x)

|∇u|p(x) dx−
∫
Ω
F (u(x, t))dx

where F (t) =
∫ t

0
f(s)ds.

Theorem 4.1. Let (H1) to (H5) be satisfied then the solutions of Problem (1.2) blow up in finite time,
namely, there exists a T ∗ < ∞ such that ∥u(., t)∥∞,Ω → ∞ as t → T ∗.

Proof. Multiplying the equation (1.2) by ∂u
∂t

, integrating by parts, we have

g′(t) =

∫
Ω

a(x)u
∂u

∂t
dx = −

∫
Ω

1

p(x)
|∇u|p(x) dx+

∫
Ω

uf(u)dx

= −
∫
Ω

p(x)
1

p(x)
|∇u|p(x) dx+

∫
Ω

uf(u)dx

≥ −p+
∫
Ω

1

p(x)
|∇u|p(x) dx+

∫
Ω

uf(u)dx

≥ −p+
(
E(t) +

∫
Ω

F (u(x, t))dx

)
+

∫
Ω

uf(u)dx

≥
∫
Ω

uf(u)dx− p+
∫
Ω

F (u(x, t))dx

≥
∫
Ω

uf(u)dx− p+
∫
Ω

F (u(x, t))dx

≥
(
α− p+

α

)∫
Ω

|u|α dx. (4.1)

By using Hölder’s inequality, we have

g
α
2 (t) ≤

(
∥a∥∞
2

)α
2

|Ω|
α−2
2

∫
Ω

|u|α dx. (4.2)

Thus, it is deduced by combining (4.1) and (4.2) that

g′(t) ≥ kg
α
2 (t),

where k =
(

2
∥a∥∞

) 2
α
(1− p+

α
) |Ω|

2−α
2 > 0.

A direct integration of the above inequality over (0, t) then yields

g
α
2
−1(t) ≥ 1

g1−
α
2 (0)− k(α

2
− 1)t

,

9
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which implies that g(t) blows up at a finite time T ∗ ≤ g1−
α
2 (0)/(k(α

2
− 1)), and so does u.

5 NUMERICAL COMPUTATION

We solve the problem (1.2) with the term f = λuα(x, t), where α > 1 and the domain Ω is just the
real line, that is Ω = [0, 1] . The problem becomes :

a(x)ut(x, t) =
(
|ux(x, t)|p(x)−2 ux(x, t)

)
x
+ λuα(x, t), x ∈ [0, 1] , t > 0

u(x, 0) = u0(x) x ∈ [0, 1] ,
u(x, t) = 0 x ∈ ∂Ω, t > 0.

,

For the special discretization, we choose a uniform mesh Dh = {xi : 0 = x0 < x1 < ... < xM+1 = 1}
(with xi = ih) on Ω and replace

(
|ux|p(x)−2 ux

)
x
((xi, t) (1 ≤ i ≤ M) by the standard central

difference approximation.

We use the function 10 sin(πx) as the initial function, we get the following system of Ode, for Ui(t) ≈
u(xi, t) (1 ≤ i ≤ M) :

(S)

 a(xi)U
′
i(t) = h−p(xi)A(Ui(t)) + λUα

i (t), 1 ≤ i ≤ M ,
U0(t) = UM+1(t),
Ui(t) = 10 sin(πxi).

,

where qi = p(xi)− 2 and A(Ui(t)) = |Ui+1(t)− Ui(t)|qi (Ui+1(t)−Ui(t))−|Ui(t)− Ui−1(t)|qi (Ui(t)−
Ui−1(t))

We solve the problem (S) with the term MATLAB solvers ode45 and we illustrate our previous results
with some numerical experiments which show some of the properties observed for the numerical
solutions. In all cases we take the initial data u0(x) = 10. sin(π.x), x ∈ [0, 1]. The other parameters
are specified in the graphs: (Figs. 1, 2, 3, 4).

Fig. 1. Numerical solution of (1.2) with a(x) = 1 + x, p(x) = 2 + x and α = 3

10
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Fig. 2. Numerical solution of (1.2) with a(x) = 1 + x, p(x) = 2 + x and α = 4

Fig. 3. Numerical solution of (1.2) with a(x) = 1 + x2, p(x) = 2 + 1
2
.x and α = 3

Fig. 4. Numerical solution of (1.2) with a(x) = 1 + x2, p(x) = 2.5 + x and α = 3
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6 CONCLUSION

In paper [8], the author studies the problem (1.2)
with the operator div(um−1 |Du|λ−1 Du) and the
source term null, our main contribution is to
generalize this work to the p(x)-laplacian operator
with the source term f satisfying the conditions of
type (4.0). We have carried out several numerical
examples in one dimension with variable a(x)
and p(x). In equation (S), the non-linear term
f(x, u) describes the non-linear source in the
diffusion process. We describe our results in
the one-dimensional case. Of course, most
physical problems are described in two or three
dimensions. The extension to several space
dimensions is straightforward.

ACKNOWLEDGEMENTS

The authors are grateful to the anonymous
reviewers for several comments and suggestions
which contributed to improve this paper.

COMPETING INTERESTS

Author has declared that no competing interests
exist.

References
[1] El Ouardi H, El Hachimi A. Existence and

regularity of a global attractor for doubly
nonlinear parabolic equations. Electron. J.
Diff. Eqns. 2002;45:1-15.

[2] Fan X, Zhao D. On the space Lp(x)(Ω)
and Wm,p(x)(Ω). J. Math. Anal. Appl.
2001;263:749-760.

[3] Zhao JN. Existence and nonexistence of
solutions for ut = div(|∇u|p−2 ∇u) +
f(∇u, u, x, t). J. Math. Anal. Appl.
1993;172(1):130-146.

[4] EL Ouardi H, de Thelin F. Supersolutions
and Stabilization of the Solutions of a
Nonlinear Parabolic System. Publicacions
Mathematiques. 1989;33:369-381.

[5] El Ouardi H, El Hachimi A. Existence
and Attractors of Solutions for Nonlinear
Parabolic Systems. EJQTDE. 2001;5:1-16.

[6] El Ouardi H, El Hachimi A. Attractors for a
class of doubly nonlinear parabolic systems.
E. J. Qualitative Theory of Diff. Equ., No. 1.
2006;1-15.

[7] El Ouardi H. Global attractor for quasilinear
parabolic systems involving weighted p-
Laplacian operators. J. Pure and App. Mat.
Advances and App. 2011;5(2):79-97.

[8] Tedeev AF. The interface blow-up
phenomenon and local estimates for
doubly degenerate parabolic equation.
Appl. Anal. 2007;86(6):755.

[9] Acerbi E, Mingione G, Seregin GA.
Regularity results for parabolic systems
related to a class of non Newtonian fluids.
Ann. Ins. H. Poincaré Anal. Non Linéaire.
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H. Poincaré AN; 2012.
DOI:10.1016/j.anihpc.2012.01.001

[19] Martinson LK, Pavlov KB. Unsteady shear
flows of a conducting fluid with a rheological
power law. Magnitnaya Gidrodinamika.
1971;2:50-58.

[20] Astrita G, Marrucci G. Principles of non-
newtonian fluid mechanics. McGraw-Hill;
1974.

[21] Acerbi E, Mingine G. Regularity results
for stationary electrorheological fluids. Arch.
Ration. Mech. Anal. 2002;(164):213-259.

[22] Fan X, Zhang QH. Existence of solutions
for p(x)−Laplacian Dirichlet problem.
Nonlinear Anal. 2003;52:1843-1852.

[23] Fan X. Global C1,α regularity for
variable exponent elliptic equations in
divergence form. J. Differential Equations.
2007;235:397-417.

[24] Kungching Chang. Critical point theory and
its applications. Shanghai Sci. Tech. Press,
Shanghai; 1986.

[25] Simon J. Compact sets in Lp(0, T ;B). Ann.
Mat. Pura Appl. 1987;4(146):65-96.

—————————————————————————————————————————————————–
c⃝ 2017 Ouardi; This is an Open Access article distributed under the terms of the Creative Commons

Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.

Peer-review history:
The peer review history for this paper can be accessed here:

http://sciencedomain.org/review-history/19342

13

http://creativecommons.org/licenses/by/4.0

	INTRODUCTION
	BASIC SPACES AND THE MAIN RESULTS
	MAIN RESULTS
	Existence
	Uniqueness

	BLOW-UP RESULTS
	NUMERICAL COMPUTATION
	CONCLUSION

