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Abstract 
In this experiment, proximal measurements and Unmanned Aerial Vehicle (UAV) imagery was used to determine 
growth stages for bambara groundnut (Vigna subterranea (L.) Verdc.). The crop is a high potential crop due to its 
ability to yield in marginal environments, but neglected and underutilised due to lack of information on its 
growth in different environments. This study evaluated the correlation between Normalised Difference 
Vegetation Index (NDVI) derived from the ground as well as airborne sensors to test the ability of remotely 
sensed data to identify growth stages. NDVI and chlorophyll content of bambara groundnut leaves were 
measured at ground level at 18, 32, 46 and 88 days after planting (DAP) comprising vegetative, flowering, pod 
formation and maturity growth stages. The UAV imagery for the experimental plots was acquired with 0.2m 
resolution at maturity. The result showed a significant (p < 0.05) linear relationship between proximal NDVI and 
chlorophylls content at all growth stages of growth. The R2 varied from 0.57 in the vegetative stage to 0.78 in the 
flowering stage. Furthermore, NDVI derived from proximal measurements and UAV data showed a significant 
(p < 0.05) correlation. The observed high correlation between proximal sensors, UAV data and crop parameters 
suggest that remote sensing technologies can be used for rapid phenotyping to hasten the development of models 
to assess the performance of underutilised crops for food and nutrition security. 

Keywords: chlorophyll content, NDVI, remote sensing, UAV, underutilised crops, vegetation indices 

1. Introduction 
Plant phenotypes are dynamic and the result of plant interactions with the environment. Understanding these 
activities in a constantly changing climate is important for the development of plant science, crop management 
and breeding of new varieties (Pieruschka & Schurr, 2019). The plant research community need to accurately 
measure the diverse characteristics of plants in order to understand their adaptation to resource-limiting 
environments. Bambara groundnut (Vigna subterranea (L.) Verdc.), is a legume crop that is commonly grown in 
low-input systems across sub-Saharan Africa and Southeast Asia (Mayes et al., 2019). In addition to having good 
nutritional characteristics, bambara groundnut is highly tolerant to drought and is able to yield on lands that are 
not fertile enough for the cultivation of many other crops. However, despite its potential, it remains underutilised 
due to lack of information on its performance in different environments and in particular, its phenotypic 
development. This limits the ability to assess its suitability for new locations (Suhairi et al., 2018).  

Crop phenotype is the result of interaction between the genotypic and environmental factors. It comprises 
geometric traits such as height, leaf area index, canopy cover and spectral features and physical traits such as 
chlorophyll content, biomass and photosynthesis; nutrient contents and yield (Yang et al., 2017). Understanding 
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how these traits change over time is one of the crucial steps in monitoring the crop growth. Contrasting these 
events with crop management events such as irrigation, fertiliser and pesticide application an essential source for 
understanding the crop conditions (Prasad et al., 2006). 

Various technological approaches based on remotely sensed measurements have been proposed to assess these 
traits in the field condition (Yang et al., 2017). The commonly used trait for high-throughput screening and 
phenotyping is the Normalized Difference Vegetation Index (NDVI) derived from canopy reflectance. NDVI is 
measured using wavelengths within the near infrared (NIR) and visible (VIS) regions of the electromagnetic 
spectrum. The NDVI is associated to chlorophyll content in the leaf molecules that in turn is related to 
photosynthetic capacity of the plants. NDVI can be used to estimate the relative crop biomass at different crop 
developmental stages as well as nitrogen deficiency at crop senescence (Tattaris et al., 2016). There is enough 
scientific evidence to suggest that NDVI can be successfully used to estimate different crop traits (Jewan et al., 
2019; Johnson, 2003; Wall et al., 2008). For example, Leaf Area Index (LAI), which is one of the most important 
indicators of crop growth has been indirectly estimated using NDVI for soybean, maize (Colombo et al., 2003; 
Johnson, 2003) and bambara groundnut (Jewan et al., 2019). The NDVI has also been used to forecast the yield 
of barley, canola, field peas and spring wheat (Mkhabela et al., 2011), bambara groundnut (Jewan et al., 2019), 
wheat (Wall et al., 2008) and maize (Shanahan et al., 2001). Therefore measurements of NDVI or its estimates 
can be used in yield assessment models (Prasad et al., 2006).  

Phenotyping using ground-mounted vehicles can provide information about plant traits on a timescale of many 
hours for a plot. However, this method is time-consuming and is not practical for large scale and remotely 
located plots (Han-Ya et al., 2010). Using multiple sensors to take measurements concurrently for many plots 
may increase the costs (Candiago et al., 2015a; Gevaert et al., 2015). This has recently motivated the use of 
high-resolution data processing in phenotyping. In addition, field-based phenotyping to monitor the phenology 
and crop parameters for bambara groundnut landraces has recently been shown to be ineffective (Jewan et al., 
2019). Determination of leaf chlorophyll content, which requires sampling from several locations in the leaf to 
obtain adequate characterisation (Candiago et al., 2015b) usually takes a long time to accomplish. This in turn, 
hinders the process of calibrating crop models, particularly for less-researched, neglected and underutilised 
species. Development of rapid NDVI estimation methods for crop parameters using remote sensing approaches 
can streamline modelling efforts for these crops. 

Satellite remote sensing has also proven to be a valuable tool for monitoring crop health, crop modelling, climate 
change adaptation and mitigation and others (Cobb et al., 2013; Li et al., 2014). However, currently available 
satellite data are costly, lack sufficient spatial resolution to identify desirable features, cloud cover and have 
long-term visiting periods (Cobb et al., 2013; Tattaris et al., 2016). Alternatively, unmanned airborne platforms 
have the ability for monitoring large scale crop parameters using high spatial and spectral resolution images. 
Remote sensing platforms using low altitude and flexible unmanned airborne platforms provide more affordable 
tools for crop phenotyping and precision agriculture (Candiago et al., 2015b). Therefore, UAVs can play a 
crucial role in the high-performance, near real-time phenotyping for large number of plots and field trials to 
reduce the potential costs. These UAVs provide high spatial and spectral imagery, useful for determining crop 
vegetation indices (VIs) and plant phenotyping. In this study, proximal measurements and UAV imageries 
were used to derive NDVI values for bambara groundnut. The objectives of this study were i) to evaluate NDVI 
obtained from a proximal sensor and its relationship with the selected phenotypic characteristics of bambara 
groundnut, ii) to compare the data derived from the UAVs with proximal sensors and chlorophyll content, and iii) 
to evaluate the ability of UAV data in predicting the crop growth stages. 
2. Method 
2.1 Description of Study Site 

The field trial was conducted at the Field Research Centre of Crops for the Future Research Centre, Semenyih, 
Selangor (2°55′56.96″ N, 101°52′33.59″ E) during July-October 2019. Block 3 which is 0.1 ha in size with a 
slight slope was designated for this experiment. Randomised sub blocks were created within the field to take 
measurements of crop phenotypes. The experimental field is shown in Figure 1.  
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4. Discussion 
4.1 Correlation between Proximal Sensors in Different Crop Stages. 

Figure 3 shows that SPAD values and NDVI derived from the GreenSeeker were correlated at all growth stages 
although during vegetative growth (18 DAP) there was a relatively weak correlation. During this stage, the 
canopy has a low number of leaves and the small leaf area affects the signal received by the sensor. This is due to 
the reflectance of plant canopy in visible and near infrared regions that is effected by the amount of green tissue 
present. The higher the absorption, the higher the value of NDVI. Both biomass and chlorophyll content affect 
the proximal sensing measurements above the crop (Amaral et al., 2015). This result confirms other results 
obtained for maize and wheat (Eitel et al., 2008; Solari et al., 2008). 

The slope of the regression decreased to 45.27 at 88 DAP (maturity stage, Figure 3). This can be associated with 
the leaf senescence. During the senescence, at least 10% of leaves are senesced without new leaves being formed 
to replace them, this phenomenon indicates the beginning of canopy decline. Thus reddening of canopy leaves 
(Mabhaudhi & Modi, 2013). Similarly, other studies show that temporal profiles of NDVI vary every fortnight, 
especially at the beginning and at the end of each cycle (Junges et al., 2019). These results show that NDVI has 
the potential to reflect the vegetation change and canopy development corresponding to canopy photosynthetic 
capacity (CPC) at different crop growth stages for Bambara groundnut.  

4.2 Applicability of Both Methods in Deriving the Vegetation Indices 

Data from both proximal and remote sensing methods were positively correlated. The proximal measurements 
shown the capability to predict yield and biomass in maize, wheat and for plant breeding in field condition (Eitel 
et al., 2008; Solari et al., 2008; Tattaris et al., 2016). However, both systems have their own advantages and 
drawbacks. The present study is based on spatial and spectral relationship between GreenSeeker and UAV 
imagery. GreenSeeker provides low resolution data, but with higher focus on the crop and therefore little 
influence of the space between rows that in turn leads to limited covered area. UAV imagery provides high 
spatial resolution spectrometry that can be used to generate data for large numbers of plots, in a fraction of time 
that is required to make ground-based measurements (Gnädinger & Schmidhalter, 2017). In addition, the use of 
high resolution and low altitude UAVs can address other drawbacks of proximal sensing systems, such as 
non-simultaneous measurement of various plots, trafficability, small row spaces, plot geometries requiring 
specific sensor configurations, and vibrations resulting from uneven field slope (Tattaris et al., 2016). However, 
GreenSeeker is an active system, it is less influenced by lighting conditions. Although highly correlated, the 
NDVI derived from the GreenSeeker did not exhibit the same frequency distributions, which means caution 
should be exercised when using this data for site specific crop management.  

The variance of the bandwith between both methods in deriving the vegetation indices also limits the extraction 
of vegetation information. The proximal sensor has broad bandwith compare to the multispectral sensor deploy 
on the UAV which having narrow bandwith. The proximal sensor (Greenseeker and SPAD) is using a group of 
bands which leads to a lack of sensitivity especially when applying the vegetation indices on the heterogeneous 
canopies which consists of cover crop, weed and soil in the interows. This hetegeneneous canopies will lead to 
the difficulties in discriminating area of interest particularly when vegetation indices respond to other vegetation 
such as weeds rather than area of interest (Xue & Su, 2017). However, multispectral sensor by using the UAV 
has the advantages of discriminating heterogenous canopies and sensitivity towards detection of spectral 
properties on green vegetation. Previous studies had been conducted using UAV imagery for different application 
such as vegetation and soil segmentation (Hassanein et al., 2018) and crop row detection (Hassanein et al., 2019). 
The segmentation of vegetation and soil fraction can be implemented by vegetation indices (VIs) using different 
spectral bands and their combinations (Mesas-Carrascosa et al., 2020). Color vegetation indices (CVIs) are used 
to emphasize plant greenness using common red, green and blue (RGB) sensors on UAV platforms 
(Torres-Sánchez et al., 2014). Similar in Jiangsu, China, the study was conducted for estimation of nitrogen 
where it stated that the indices from multispectral sensor images derived from UAV performed better in the most 
cases compared to other indices from proximal sensor (Zheng et al., 2018). 

Although the other vegetation index, VARI, was not correlated well with the proximal sensing data at all growth 
stages, it demonstrated that UAV-based RGB imaging with visible wavebands for assessing vegetation indices 
was consistent with the results shown in Figure 3 (c). Previous studies have demonstrated that UAV-based RGB 
indices can be used for crop health monitoring and estimating growth traits in oilseed rape (McKinnon & Hoff, 
2017; Wan et al., 2018). RGB images only provide limited crop physiological information. The canopy 
reflectance reacts strongly to the blue and green light (Amaral et al., 2015; Sulik & Long, 2015). Thus, although 
VARI is not a replacement for NDVI, the VARI algorithm applied to an RGB sensor can provide valuable 
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information and also be a useful tool to assist farmers in identifying crop stress, monitoring field for crop 
phenotyping it is shown for sugarcane and oilseed rape (Amaral et al., 2015; McKinnon & Hoff, 2017; Wan et al., 
2018). 

4.3 Advantages, Limitations and Future Work 

Aerial based imagery for crop phenotyping is an efficient, cost-effective and suitable technique for complex 
environments. It can help with rapid identification of growth information with high resolution data. Similar 
studies were conducted for crop phenotyping (Liebisch et al., 2015; Tattaris et al., 2016) and precision 
agriculture (Candiago et al., 2015b) which they provide a low-cost approach in order to obtain accurate results 
for phenotyping in the field environment. However, it will be more useful if hyperspectral sensors could also be 
used with the aerial-based sensors. This is the key limitation in current crop phenotyping, which limits the 
amount of information that can be derived from these platforms. In fact, by having hyperspectral data which 
combine properties of imaging and spectroscopy (Kumar et al., 2016) high resolution spectral vegetation indices 
such as soil adjusted vegetation indices (SAVI), enhance vegetation indices (EVI) etc. along with crop 
parameters such as leaf area index (LAI), soil fertility, soil moisture, level of crop stress, yield prediction, 
biomass can be estimated. 

Further study is required to evaluate the capability of data fusion between proximal sensors (SPAD, GreenSeeker) 
with canopy temperature or any other related data with aerial-based sensors (UAV imagery) to improve 
monitoring of other crop growth-related traits in field observations. Fusion of data from multiple sensors could 
provide more information for crop phenotyping which may be especially helpful for underutilised crop studies. 

Finally, collecting low cost UAV data (Wang et al., 2018) and linking this data to the global satellite remote 
sensing databases, in a consistent format that can be shared with other stakeholders working on neglected and 
underutilised crops will help with the inclusion of these crops in the global crop monitoring projects such as 
GEOGLAM (Becker-Reshef et al., 2018) for yield forecasting and crop monitoring. 

5. Conclusion 
Developing rapid crop phenotyping methods for neglected and underutilised crops is an important step towards 
ensuring food and nutrition security in a warming world. In this experiment, we found positive relationship 
between different sensors used for phenotyping and determining developmental stages for bambara groundnut, a 
neglected and underutilised crop. The results show that there is a potential application for UAV based crop 
phenotyping in the field. However, there is still a need for validation of results in different environments using 
different genotypic varieties of bambara groundnut before it can successfully be used for predicting growth 
stages. 
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