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Abstract 
 

A quasi-affine transformation, being the whole part of a rational affine transformation, is the discretized 
form of an affine transformation. Introduced by Marie-André Jacob-Da Col, it has been the subject of 
numerous studies. This article is devoted to the study of the algebraic structures of some quasi-affine 
bijective transformations, in particular the discrete translations of isolated points and Pythagorean 
rotations. 
 

 
Keywords: Algebraic structure; pythagorean rotations; discrete translations; quasi-affine transformation. 
 

1 Introduction 
 
A quasi-affine transformation is the correspondent of the affine transformation in discrete space. This is the 
discretization of the affine transformation. Often used in image processing applications, several articles have 
focused on the study of quasi-affine transformation in the discrete plane [1,2,3]. Precisely on the link of 
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quasi-affine transformation with tiling, on the dynamic system associated with the QAT and on the various 
algorithms linked to QAT.  
 
Blot and Coeurjolly [4] resumed the study of quasi-affine mappings in a higher dimensional discrete space. 
Pluta and Romon [5] approached the notion of discrete isometries digitized of subsets of planes. A 
comparative study has shown that some properties of affine transformations are not conserved by discrete 
affine transformations (QAT) [6]. 
 
In section 2, we first detail basic terminology and preliminaries and we prove in general the algebraic 
structure of bijective quasi-affine transformation. Then, Section 3 contains the main results with the 
algebraic structure for discrete translations of isolated points and Pythagorean rotations in ℤ� 
 

2 Basic Terminology and Preliminaries 
 

In this article, we will use the following concepts and notations [7, 1]: 
 
 If x is a real, ⌊�⌋ represents the entire part of x which is the largest integer less than and equal to x. 

 If x and y are two integers with � ≠ 0, �
�

�
� respectively represents the integer quotient of x by y. 

 If x and y are integers, then gcd(x,y) is the greatest common divisor of x and y. 
 

2.1 Definition 
 
A quasi-affine transformation ⌊f⌋ (QAT) is a discrete transformation defined such as:  
 

 

⌊f⌋ ∶ ℤ� ⟶ ℤ�                             

              �
x

y
� ⟼ �

x′ = �
ax+ by + e

ω
�

y′ = �
cx+ dy + f

ω
�

�  

 

where a,b,c,d,e,f w ∈ ℤ with w > 0. It is the integer part of a rational affine transformation [2, 3, 8, 9].  
 

2.2 Definition 
 
A quasi-linear transformation ⌊u⌋ (QLT) is a discrete linear transformation such as:  
 

 

⌊u⌋ ∶ ℤ� ⟶ ℤ�                                     

�
x

y
� ⟼ �

x′ = �
ax+ by

ω
�

y′ = �
cx+ dy

ω
�

� 
 

 

where a,b,c,d w ∈ ℤ with  w > 0. It is the integer part of a rational linear transformation. The matrix                     

� =
�

ω
�
a b
c d

� is called the quasi-linear transformation matrix [4]. 
 

2.3 Example 
 

Assume a quasi-affine transformation 
⌊f⌋∶ ℤ� ⟶ ℤ�                             

        �
x

y
� ⟼ �

x′ = �
x − 2y − 3

2
�

y′ = �
2x + y + 4

2
�

� 
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Its graphic representation in a subset of ℤ�  D = ⟦− 5;5⟧× ⟦− 5;5⟧ is given by the Fig. 1 below:  
 

 
 

Fig. 1. The image of space � ⊂ ℤ� by the transformation ⌊�⌋ with � = � 
 

2.4 Definition  
 

The QAT is called contracting if  ω� > |dét(A)|, otherwise it is called dilating [4, 10]. 
 

We note that the quasi-affine transformation defined above is dilating (see Fig. 1) while that defined by  
 

⌊f′⌋∶ ℤ� ⟶ ℤ�                             

   ��
�
� ⟼ �

x′ = �
������

�
�

y′ = �
������

�
�

� is contracting. 

 
The Fig. 2 is a representation of the QAT contracting 

 

 
 

Fig. 2. The image of the subspace � ⊂ ℤ� by the transformation ⌊�′⌋, if  � = � 
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2.5 Definition 
 
Let ⌊�⌋ be a QAT contracting. For (�′,�′)∈ ℤ�, we denote 

�(�′,�′) = {(�,�)∈ ℤ� ⌊�⌋(�,�)⁄ = (�′,�′)}= ���(�′,�′) 

 
P(�′,�′) is called order 1 paving of index (x’,y’) of ⌊f⌋. 

 

2.6 Example 
 
If we consider the previous example for a QAT contracting  ⌊�′⌋, the different order 1 paving are:   
 
P�,� = {(− 1,− 2),(0,−2),(0,−3)} 

P�,� = {(1,−1),(1,− 2),(2,−1),(2,−2)} 

P�,� = {(0,−4),(1,− 4),(1,−3)} 

P�,� = {(2,−4),(2,− 3),(3,−3)} 
P�,� = {(3,−1),(3,0),(4,−1)} 
 

2.7 Theorem 
 
The quasi-linear application ⌊u⌋(QLT) is bijective if ω = gcd(|a|,|b|,|c|,|d|) and  det(A)≠ 0 
 

Proof: In fact, consider 0 < ω ∈ ℤ  such that ω = gcd(|a|,|b|,|c|,|d|). Prove that ⌊u⌋(QLT) is injective and 
surjective. 
 

(1) Injectivity. For all (x,y),(x’,y’) ∈ ℤ�, we have⌊u⌋(x ;y)= ⌊u⌋(x’,y’) then  
 

�
�
�����

ω
� = �

��′���′

ω
�

�
�����

ω
� = �

��′���′

ω
�

� ⟹ �
�
�

ω
x +

�

ω
y� = �

�

ω
x′ +

�

ω
y′�

�
�

ω
x +

�

ω
y� = �

�

ω
x′ +

�

ω
y′�

�   

As ω = gcd(a,b,c,d), the ratios 
�

ω
 , 
�

ω
 , 
�

ω
, 
�

ω
 ∈ ℤ.  

 

Thus :  �

�

ω
(x − x′)+

�

ω
(y − y′)= 0

�

ω
(x − x′)+

�

ω
(y − y′)= 0

�                                                                                                                            (1) 

 
Knowing than det(A)≠ 0 and ω� ≠ 0, the determinant of the system (1) is ω�det (A)≠ 0, then the system 
of linear equations possesses a solution unique[11]. The solution of the equation leads to  x = x′ and y = y′. 
Hence,  (x,y)= (x′,y′) and ⌊u⌋ is injective. 
 

(2) Surjectivity. For all (x’,y’) ∈ ℤ�, ∃(x,y) ∈ ℤ� such that⌊u⌋(x,y)= (x’,y’), we have: 
 

 �
�
�����

ω
� = x′

�
�����

ω
� = y′

� ⟹ �
�
��

ω
+

��

ω
� = x′

�
��

ω
+

��

ω
� = y′

�  ⟹ �

�

ω
x +

�

ω
y = x′

�

ω
x +

�

ω
y = y′

� ⟹ �
ax+ by = ωx′

cx+ dy = ωy ′
�   

 
By solving linear systems of diophantine equations, we obtain the following solution: 
 

(x,y)= �
ω���′���′�

��� (�)
,

ω(��′���′)

��� (�)
 � ∈ ℤ� 
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Then ⌊u⌋ is surjective. Hence, the quasi-linear transformation ⌊u⌋ with ω = gcd(|a|,|b|,|c|,|d|)) is bijective. 

� 
 

2.8 Theorem  
 
The set of quasi-linear bijective transformations of  ℤ� with the usual composition has a group structure. 
 
Proof. In fact,  
 

(1) Stability: Let ⌊u⌋ and ⌊u′⌋  two quasi-linear transformations defined in ℤ� respectively by ⌊u⌋ (x,y)=

(x′,y′) with �
x′ = �

�����

ω
�

y′ = �
�����

ω
�

�  and by ⌊u′⌋ (x,y)= (x’,y’)  with �
x′ = �

�′���′�

ω′
�

y′ = �
�′���′�

ω′
�

� . We defined the 

homogenous matrix of ⌊u⌋  by  M ⌊�⌋ =
�

ω
�
a b
c d

� and that of ⌊u′⌋  by  M ⌊�′⌋ =
�

ω
�
a′ b′
c′ d′

�.The matrix of 

⌊u′⌋ o ⌊u⌋    is defined by   
 

A⌊�′⌋× A⌊�⌋ =
1

ωω′
�a

′a+ bc′ a′b + db′
c′a+ d′c c′b + d′b

� 

 
So ⌊u′⌋ o ⌊u⌋  is the quasi-linear bijective transformation defined by ⌊u′⌋ o ⌊u⌋(x,y)= (x′,y′)  with  

�
x′ = �

(�′����′)��(�′����′)�

ωω′
�

y′ = �
(�′���′�)��(�′���′�)�

ωω′
�

� 

 
(2) Associativity: The multiplication of the matrix is associative; we deduce that the composition of 

bijective QLT is associative. Hence 
 

[u]o([u′]o[u′′])= ([u]o[u′])o[u′′] 
. 

(3) The existence of the neutral element. The transformation id defined by ⌊id⌋(x,y)= ��
�

ω
� ,�

�

ω
�� with 

 ω = 1 ,is the neutral element of the group of the quasi-linear transformations with the law of 
composition. 
 

Then the set of quasi-linear bijective transformations of ℤ�  with the usual composition has a group 
structure.� 
 

(4) Symmetrization. A quasi-linear bijective transformation  
 

⌊u⌋ ∶ ℤ� ⟶ ℤ�                                    

�
x

y
� ⟼ �

x� = �
ax+ by

ω
�

y� = �
cx+ dy

ω
�

� 
 

 
admit for inverse 
 

 

⌊u⌋��  ∶ ℤ� ⟶ ℤ�                                     

    ��
�
� ⟼ �

x� = �
� ���� ��

����
�

y� = �
�� ���� ��

����
�

� � 
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2.9 Theorem  
 
The quasi-affine transformation ⌊f⌋(QAT) is bijective, if   ω = gcd(|a|,|b|,|c|,|d|,|e|,|f|) and det(A)≠0. 

Proof: Let ω = gcd(|a|,|b|,|c|,|d|,|e|,|f|), and suppose 0 < ω ∈ ℤ . Let us show that ⌊f⌋(QAT) is injective 
and surjective. 
 

(1) Injectivity. For all (x,y),(x’,y’) ∈ ℤ�, we have ⌊f⌋(x,y)= ⌊f⌋(x’,y’) then 
 

�
�
ax+ by + e

ω
�= �

ax′ + by′ + e

ω
�

�
cx+ yd + f

ω
�= �

ax′ + by′ + e

ω
�

� ⟹ �
�
a

ω
x +

b

ω
y +

e

ω
�= �

a

ω
x′ +

b

ω
y′ +

e

ω
�

�
c

ω
x +

d

ω
y +

f

ω
�= �

c

ω
x′ +

d

ω
y′ +

f

ω
�

� 

 

As ω = gcd(|a|,|b|,|c|,|d|,|e|,|f|), the ratios 
�

ω
 , 
�

ω
 , 
�

ω
, 
�

ω
 , 
�

ω
 ,  

�

ω
  ∈ ℤ. 

 

Hence :  �

�

ω
(x − x′)+

�

ω
(y − y ′)= 0

�

ω
(x − x′)+

�

ω
(y − y ′)= 0

�.                                                                                                           (1) 

 

Knowing than det(A)≠ 0 and ω� ≠ 0, the determinant of system (1) is 
��� (�)

ω�
≠ 0, then the system of linear 

equations possesses a unique solution [11]. The solution of the equation leads to  x = x′ and y = y′. Hence,  
(x,y)= (x′,y ′) and ⌊f⌋ is injective. 
 

(2) Surjectivity. For all (x’,y’) ∈ ℤ�, ∃(x,y) ∈ ℤ� such that ⌊f⌋(x,y)= (x’,y’), we have: 
 

�
�
ax+ by + e

ω
�= x′

�
cx+ dy + f

ω
�= y′

� ⟹ �
�
a

ω
x +

b

ω
y +

e

ω
�= x′

�
c

ω
x +

d

ω
y +

f

ω
�= y′

 �  

⟹ �

a

ω
x +

b

ω
y = x′ −

e

ω
c

ω
x +

d

ω
y = y′ −

f

ω

� ⟹ �
ax+ by = ωx′ − e

cx+ dy = ωy′ − f
�   

 
By solving linear systems of diophantine equations, we obtain the following solution: 
 

 (x,y)= �
ω(dx′ − by′)+ bf− de

det(A)
,
ω(ay′ − cx′)+ ce− af

det(A)
� ∈ ℤ� 

 
Then ⌊f⌋  is surjective. Hence quasi-affine transformation ⌊f⌋  such that det(A)≠ 0  and                                                  
ω = gcd(|a|,|b|,|c|,|d|,|e|,|f|) is bijective.� 
 
Remarks 
 

1. The quasi-affine bijective transformation is dilating. 
2. The tiling of the quasi-affine bijective transformation corresponds to the point image by the inverse of 

the bijective quasi-affine application. 
 

2.10 Theorem  
 
The set of quasi-affine bijective transformations of ℤ� with the usual composition has a group structure. 
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Proof: In fact, 
 

(1) Stability: Let ⌊f⌋ and ⌊g⌋ be two quasi-affine applications defined in ℤ� respectively by  
 

⌊f⌋(x,y)= (x′,y′) with �
x′ = �

�������

ω
�

y′ = �
�������

ω
�

� and by  

 

⌊g⌋(x,y)= (x’,y’) with �
x′ = �

�′���′���′

ω′
�

y′ = �
�′���′���′

ω′
�

� 

 
We define the homogeneous matrix of ⌊f⌋ by 
 

 M ⌊�⌋ =
�

ω
�
a b e
c d f
0 0 1

� and of ⌊g⌋ by                                          

 

M ⌊�⌋ =
�

ω′
�
a′ b′ e′
c′ d′ f′
0 0 1

�. 

 
The matrix of ⌊g⌋ o⌊ f⌋ is defined by  
 
M ⌊�⌋ �⌊ �⌋ � M ⌊�⌋× M ⌊�⌋ 

   =
1

ωω′
�
a′a+ b′c a′b + db′ a′e+ b′f+ e′
c′a+ d′c c′b + d′d c′e+ d′f+ f′

0 0 1

� 

 
Hence, ⌊g⌋ o⌊ f⌋  is a quasi-affine bijective transformation defined by ⌊g⌋ o⌊ f⌋ (x′,y′)= (x′,y′)  with 

�
x′ = �

(�′���′�)��(�′����′)���′���′���′

ωω′
�

y′ = �
(�′���′�)��(�′���′�)���′���′���′

ωω′
�

� 

 
(2) Associativity: The multiplication of matrix is associative; we deduce that the usually composition of 

bijective QAT is associative. Hence, 
 

([h]o[g])o[f]= [h]o([g]o[f]) 
 

(3) The neutral element existence. The transformation ⌊id⌋ defined by  ⌊id⌋(x,y)= ��
�

ω
� ,�

�

ω
��  with 

 ω = 1 , is the neutral element of the group of the quasi-affine transformations with the usually 
composition. 

 
(4) Symmetrization. A quasi-affine transformation ⌊f⌋ admit for inverse is defined by  

 
⌊f⌋��  ∶ ℤ� ⟶ ℤ�                                           

                      �
x

y
� ⟼

⎩
⎪
⎨

⎪
⎧x′ = �

ω(dx − by)+ bf− de

det(A)
�

y ′ = �
ω(ay− cx)+ ce− af

det(A)
�

� 

 
with det(A)≠ 0 
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Hence, the set of quasi-affine bijective transformations of ℤ�  with the usual composition has a group 
structure.� 
 

3 The Algebraic Structure of Quasi-Affine Transformations 
 
In this section, we study the usually Algebraic structures of some quasi-affine transformations. 

3.1 Discrete translations 

 
3.1.1 Definition 
 
A discrete translation  ��  of the vector � is defined by [2] 
 
   ��: ℤ

� ⟶ ℤ�  

        ��
�
� ⟼ �

x′ = x + �u +
�

�
�

y ′ = y + �v+
�

�
�

� 

 
3.1.2 Example  
 
Let  u = (2,− 4) a vector translation,  ��  is defined by: 
 
T� ∶ ℤ

� ⟶ ℤ�  

       �
x

y
� ⟼ �

x′ = x + �2 +
1

2
�

y′ = y + �−4 +
1

2
�

� 

 
Its graphic representation in a subset of ℤ� is given by the Fig. 3: 
 

 
 

Fig. 3. The image of the space � ⊂ ℤ� by the discrete translation  �(�,��) 

 
3.1.3 Definition  
 
The composition of two translations �� and   �� is defined by  ��   �� =  ���� 
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The Algebraic proprieties for the set of discrete translations of isolated points with the usually composition 
are similar to those of translations in continuous spaces.  
 

Let’s verify the Algebraic proprieties for the set of discrete translations of isolated points with the law of 
composition. 
 

a) Stability: In fact, let  T�  and T�   two discrete translations respectively the vectors u = (u�,u�) and                     
v = (v�,v�) defined in ℤ�respectively by : 
 

T�(x,y)= (x′,y′) where �
x′ = x + �u� +

�

�
�

y′ = y + �u� +
�

�
�

� and  

 

T�(x,y)= (x′,y′) with �
x′ = x + �v� +

�

�
�

y′ = y + �v� +
�

�
�

� 

 

The composition of two discrete translations T�  and T�    is defined by : 
 

T�  T�(x,y)= �x + �u� + v� +
�

�
 � ;y + �u� + v� +

�

�
 ��  

 

is well a translation of vector u + v. 
 

b) Associativity : for all translations T�,T� ,T�  belonging in a set of translations with u = (u�,u�),                         
v = (v�,v�) and   w = ( w �,w �) of vectors translations of ℤ� respectively  T�,T�,T� . Hence: 
T�  (T�  T� )= (T�  T�) T�  
 

c) Existence of the neutral element: The discrete translation T� of vector nul 0 is neutral element of the set 
of discrete translations with the law of composition. 
 

d) Symmetrization : All discrete transformation T�  admits for symmetric the discrete translation T�� 
 

e) Commutativity: For all discrete translations T� and T�, we have:  
 

T�  T� =  T�  T�  
 

3.1.4 Proposition  
 

The set of discrete translations of isolated points with the usually composition has a structure of 
commutative group. 

3.2 Discrete pythagorean rotation 
 
3.2.1 Definition  
 

A discrete Pythagorean rotation is defined by [12, 2]: 
 

ℛ�(�)∶ ℤ� ⟶  ℤ�                                          
 

               �
x
y� ⟼

⎩
⎪⎪
⎨

⎪⎪
⎧
x′ = �

bx − ay+
�

�

b + 1
�

y′ = �
ax+ by +

�

�

b + 1
�

� 
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with a,b,k integers such as  a = 2k + 1 and b =  2k (k + 1) 
 
3.2.2 Example  
 
Let a Pythagorean rotation defined by  
 
ℛ�(1)∶ℤ� ⟶  ℤ�                                          

            �
x
y� ⟼ �

x′ = �
�������

�
�

y′ = �
�������

�
�

� where k = 1 an integer. 

 
Its graphic representation in a subset of ℤ�  is given by the Fig. 4: 
 

 
 

Fig. 4. The image of the space � ⊂ ℤ� by the Pythagorean where � = � 
 
3.2.3 Proposition 
 
A Pythagorean rotation is bijective  
 
The proof of this proposition is established in his article [13] 
 
3.2.4 Corollary  
 
A Pythagorean rotation is optimal for k = − 1. 
 
Considering the example above related to the Pythagorean rotation, we obtain for  k = −1 
 
ℛ�(−1): ℤ� ⟶  ℤ�                        

                �
x
y� ⟼ �

x′ = − y

y′ = − x
� 

 
Its is show by Fig. 5: 
 

-15

-10

-5

0

5

10

15

-10 -8 -6 -4 -2 0 2 4 6 8 10

D

L'image de D 
par la rotation
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Fig. 5. The image of the space � ⊂ ℤ� by the Pythagorean rotation where  � = −� 
 
3.2.5 Definition  
 
Let two Pythagorean rotations ℛ�(k) and ℛ�(k’) where (k,k’)∈ ℤ × {− 1} , the composition of the two 
Pythagorean rotations is defined by 
 
ℛ�(k)  ℛ�(k’) : ℤ� ⟶  ℤ�  

                              �
x
y� ⟼ �

x′
y′
� with 

⎩
⎪
⎨

⎪
⎧x′ = �

���′���′������′���′�����′�
(�′��′�)

�

(���)(�′��)
�

y′ = �
���′���′������′���′�����′�

(�′��′�)

�

(���)(�′��)
�

�  

 
et a,a’,b,b’,k,k’ the integers such as a = 2k + 1 , b =  2k (k + 1),  a′ = 2k′ + 1 et b′ =  2k′ (k′ + 1) 
 
Let verify the Algebraic properties for the set of the Pythagorean rotations with the law of composition. 
 
a) Stability: In fact, let ℛ�(k) and ℛ�(k’) two Pythagorean rotations of the parameters k et k’ respectively 
defined in  ℤ� by: 
 
ℛ�(k)∶ℤ� ⟶  ℤ�   

               �
x
y� ⟼

⎩
⎪⎪
⎨

⎪⎪
⎧
x′ = �

bx + ay +
�

�

b + 1
�

y′ = �
ax+ by +

�

�

b + 1
�

� 

 
with a,b,k integers such as a = 2k + 1 and b =  2k (k+ 1) and by 
 
ℛ�(k′)∶ℤ� ⟶  ℤ�   

                �
x
y� ⟼

⎩
⎪
⎨

⎪
⎧x′ = �

�′���′��
�′

�

�′��
�

y′ = �
�′���′��

�′

�

�′��
�

�  

where a,b,k integers such as a′ = 2k′ + 1 and b =  2k′ (k′ + 1) 

-10

-8

-6

-4

-2

0

2

4

6

8

10

-10 -8 -6 -4 -2 0 2 4 6 8 10

D

L'image de D 
par la rotation
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The composition of two Pythagorean rotations RP(k) and RP(k’) is defined by   
 
ℛ�(k)  ℛ�(k’) : ℤ� ⟶  ℤ�   

                                   �
x
y� ⟼ �

x′
y′
� with  

⎩
⎪
⎨

⎪
⎧x′ = �

���′���′������′���′�����′�
(�′��′�)

�

(���)(�′��)
�

y′ = �
���′���′������′���′�����′�

(�′��′�)

�

(���)(�′��)
�

�  

 
Is a Pythagorean rotation as long as  (k,k’)∈ ℤ × {−1} 
b) Associativity. For all Pythagorean rotations ℛ�(k),ℛ�(k’) and RP(k′′) belonging in the set of 
Pythagorean rotations with (k,k’,k′′)∈ {− 1}× ℤ × {−1}, we have:  
 

ℛ�(k)∘ �ℛ�(k’)∘ ℛ�(k′′)� = �ℛ�(k)∘ ℛ�(k’)� ∘ ℛ�(k′′) 

 
c) Existence of the neutral element. The set of Pythagorean rotations never have the neutral element for the 
composition of transformations because there does not exist a unique value of e such that  
 
ℛ�(k’)∘ ℛ�(e)= ℛ�(e)∘ ℛ�(k′)= ℛ�(k) 
 
d) Symmetrization. All Pythagorean rotations admit for symmetry the Pythagorean rotation of parameters  

(–k − 1) since ℛ�(k)∘ ℛ�(−k− 1)= idℤ. 
 
e) Commutativity. For all Pythagorean rotations ℛ�(�) and ℛ�(�’), the composition  ℛ�(�) ℛ�(�’) is 

not commutative since the integers of factor 
(�′��′�)

�

(���)(�′��)
  never commute in ℤ. 

 
3.2.6 Proposition 

 
The set of Pythagorean rotations with the composition of transformations never has a structure of the 
commutative group. 
 

4 Conclusion 
 
The quasi-affine transformations do not always preserve the algebraic structures like their corresponding 
ones in the continuous space (affine rotation and affine translation). This article focusses on the study of 
Algebraic structures of the bijective QAT, in particular of discrete translations and Pythagorean 
rotations. The following results were found: 
 
 A quasi-linear transformation is bijective if � = ���(|�|,|�|,|�|,|�|) and det(A)≠ 0, and  a quasi-

affine transformation is bijective if � = ���(|�|,|�|,|�|,|�|,|�|,|�|) and det(A)≠0. 
 The set of quasi-linear bijective transformations having the usual composition group is called quasi-

linear group, noted by ⌊���⌋ and the set of quasi-affine bijective transformations having the usual 
composition group is called quasi-affine group, noted by ⌊���⌋. 

 The set of Pythagorean rotations with the composition of transformations never has a structure of the 
commutative group. 

 In general, the composition of two Pythagorean rotations is not a Pythagorean rotation, unless in case 
where one of the parameters equal -1 and for if � = − 1, the Pythagorean rotation is optimal 
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The inverses of images of a bijective quasi-affine application do not generate a tilling in the literal sense of 
the term, because they are made up of singletons. 
 
Subsequent developments in this work on bijcetive QAT will focus, among other things, around: 
 
 Study of one-to-one QAT and tilings. For a given bijective QAT we observe that the block is a 

singleton. Are the different block concepts still valid for one-to-one QAT? 
 Study of bijective QAT in discrete spaces of higher dimension. This will lead to a generalization on 

one-to-one QAT. 
 Study of image transformations with one-to-one QAT. 
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