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ABSTRACT 
 

Multi-phase patterns with more or less sharp phase transitions, first highlighted in thermodynamics, 
have progressively revealed having wider relevance, being encountered in various other contexts, 
for example fluid mechanics, and can even occur in the interactive dynamics in biological 
populations involving two or more species that share opposite interests, such as predator-prey or 
parasite-host pairs of species. In the latter, the pattern of abundances of both interacting species 
usually reaches an equilibrium level which can be either stable or cyclic (with large periodic 
oscillations in the latter case). Both alternative modes are separated by well-define boundaries and, 
accordingly, can relevantly be described in terms of phases and phase transitions. While this has 
recently been approached from very general perspectives, a more focused analysis is still lacking, 
regarding the nature of the phase transitions between stable and oscillatory equilibria and – still 
more importantly – how the nature of these phase transitions may possibly depend (or not) on the 
biological and contextual factors driving the parasite-host interactive dynamics. These issues are 
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addressed hereafter, on a theoretical basis, yet intimately related to the real field context, by taking 
advantage of a newly derived extension of the classical Nicholson & Bailey model of parasite-host 
interactions. Highlighted in particular are the possibility of either first-order, second-order or 
continuous phase-transitions, depending on (i) the respective own dynamics of both host and 
parasite, (ii) the density of feeding resource for the host, (iii) the level of migration exchange in a 
meta-population context. 
 

 
Keywords: Host-parasite; relaxation oscillations; first order transition. 
 
1. INTRODUCTION 
 
Predator-prey relationship sensu lato is one of 
the most ubiquitous form of interactions between 
individuals within animal communities and, as 
such, has caused much practical concern and 
also prompted strong speculative interest since a 
long time [1-4]. Predator-prey interactive 
relationships can take several, various aspects, 
among which the more commonly encountered is 
probably the parasite (especially parasitoid) 
versus host interactions, especially frequent in 
insects – the richest and most diversified animal 
group worldwide [5-7]. 
 

One major and admittedly remarkable aspect of 
predator-prey interactions is the crudely 
contrasted alternative forms that the outcome of 
these interactions can take. These alternative 
forms being either [5,7]: 
 

I. a stable equilibrium between the 
respective abundances of the predator and 
the prey, with the equilibrium level 
depending, of course, on the relative 
performances (reproduction rate, detection 
/escape abilities …) of each of the two 
partners involved, or 

II. a more or less strong, oscillating pattern 
between the relative abundances of the 
predator and the prey, with usually regular 
cycles showing periodic oscillations: Fig. 1. 

 

These two contrasted patterns of interactions are 
all the more remarkable that both patterns can be 
alternatively encountered within one and the 
same predator-prey system, involving the same 
couple of interacting species (see Figs. 1 & 2, 
with S1 and S2 as the two phases where the 
densities of the host and the parasite both reach 
stable respective equilibrium, while Os is the 
phase of oscillatory equilibrium for both the host 
and the parasite densities). 
 

This somewhat surprising situation has 
contributed, in turn, to draw specific attention – 
and indeed to seriously puzzle – not only the 

naturalists themselves but also, and perhaps still 
more, those people having practical concern, or 
economical interest, in the exploitation of various 
kind of natural resource impacted by this 
common phenomenon [3-9]. 
 
Hence the incentive to better understand the ins 
and outs of the mechanism involved in           
such predator-prey interactions on a theoretical 
basis. 
 
While this improved understanding has much to 
do – as a whole – with biological and ecological 
analysis, one particular aspect (of admittedly 
rather speculative interest) has more in-depth 
formal connections with Physical Sciences. 
 
Moreover, these two sharply contrasted patterns, 
separated from each-other by acute reciprocal 
delimitations (mutual boundaries) are, as such, 
evocative of a multi-phase (here two-phase)              
kind of structuring. In this respect, two questions 
deserve being more specifically addressed. 
 
The first question, of more speculative interest, 
is: which kind(s) of phase transitions (referring to 
the usual classification by EHRENFEST [10]) is 
(are) expected to delimit the “stable equilibrium” 
phases from the “periodic-oscillation” phase in 
the interacting system predator-prey; that is, are 
these phase transitions first-order, second-order, 
or simply exhibiting smooth transition? 
 

The second, more pragmatic question is: what 
kind of influence – if any – can the “periodic-
oscillation phase” have on the drasticity of the 
predator-prey interaction: An exacerbating 
influence or, conversely a relaxing role, or still no 
influence at all? 
 

Such questions preferably call for a theoretical 
approach, based on the available models of 
predator-prey interactions, taking advantage of 
the fact that interactions of this kind 
straightforwardly lend themselves to 
mathematical treatment. Indeed, theoretical 
models dedicated to predator-prey interactions 
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have been largely developed; the still more 
frequently referenced being the classical 
“Nicholson and Bailey model”, especially focused 
on parasite-host interactions [5,8]. Yet, the 
original version of this model still calls for some 
improvements in order to more closely – while 
still approximately – fit the realistic field 
conditions. Among required improvements are: 
 
I. Taking in account of the unavoidably 

limited available feeding resource for the 
host (a limitation which combines with the 
level of parasitism pressure to govern and 
regulate the abundance of the host);  

II. Accounting also for the so-called “meta-
population” context, that is to say, 

integrating the contribution of some 
immigration / emigration of both predator 
and prey individuals circulating between 
more or less closely neighboring 
populations. 

 
To my knowledge, no currently available model 
relevantly answers all these desired 
improvements, so that I have developed, at first, 
an extended theoretical model, designed to cope 
with these two additional requirements. In a 
second stage, this newly designed model is 
implemented to succinctly address and 
tentatively answer the two main questions 
featured above, which form the main objective of 
this work. 

 

 
 

Fig. 1. An example of oscillatory equilibrium in host-parasite dynamics. Discs: density of the 
host species; diamonds: density of the parasite species; [computed from equations (11) & (12) 

with K = 100, r = 2.0, a = 6.0, f = 0.3, v = 1, eH = eP = 0.01] 
 

 
 

Fig. 2. Host density plotted against increasing reproductive (oviposition) performance ‘a’ of 
the parasite. Discs: density of the host in the stable equilibrium phases (S1, S2) and upper 

(peak) density of the host in the oscillatory phase (Os); triangles: lower (trough) density of the 
host in the oscillatory phase; diamonds: periodicity of the oscillation cycle in term of number 

of generations. [computed from eq. (11) with K = 100, r = 2.0, f = 0.3, v = 1, eH = eP = 0.01]
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2. THE PROPOSED EXTENSION OF THE 
NICHOLSON & BAILEY MODEL 

 
The newly designed predator-prey model – more 
specifically focused on parasite-host interactions 
– is described in more details in the Appendix. In 
terms of host-parasite relationships, the relevant 
time unit to be considered is the generation 
duration (usually common to both the parasite 
and the host). Dedicated models are thus 
expressed in discrete-time with the time 
increment ‘i' labelling the successive generations 
of the host and parasite. 
 
Let then ‘hi’ and ‘pi’ be the densities (numbers of 
individuals per unit area of field investigation) of 
the host and of the parasite respectively, at the 
common generation labelled ‘i'.  Consider now 
the respective own dynamics of the parasite and 
of the host species (with the “own” dynamics of 
the host being understood in the absence of the 
parasite). These own dynamics are characterized 
quantitatively by the parameters given below. 
 
*For the parasite (predator) species: ‘v’, ‘f’ and 
‘a’, with ‘v’ as the average number of viable 
parasite individuals issued from each parasitized 
host-individual, ‘f’ as the proportion of mated 
(and thus egg-laying) females within the whole 
population of parasites and ‘a’ as the mean 
foraging area of an ovipositing parasite-female. 
In the following, this last parameter, a, is 
considered as the main distinctive parameter, 
singularizing and thus differentiating the 
reproductive own performance of a parasite 
species. 
 
*For the host (prey) species: ‘r’ and ‘K’, with ‘r’ as 
the inherent rate of increase of the host individual 
(that is, in absence of any limitation in resource 
availability for the development of host 
individuals). Now, as in fact, the available feeding 
resource for the host is always more or less 
limited in nature, it is necessary to consider also 
a parameter accounting for this limitation: ‘K’, the 
so-called “resource carrying capacity” for the 
host population. More precisely, K is the density 
of host individuals that could ultimately be fed by 
the hypothetically exhaustive consummation of 
the available resource. 
 
In addition, let ‘eH’ and ‘eP’ be the additional 
contributions of immigration, more exactly the 
balance between immigration and emigration of 
host individuals (resp. of parasite individuals), in 
complement to the host and parasite densities, 

generated in situ, within the studied population 
system itself. 
 

3. STABLE EQUILIBRIUM AND OSCILLA-
TORY EQUILIBRIUM: TWO 
CHARACTERISTIC PHASES IN HOST-
PARASITE DYNAMICS 

 

It has long been recorded that in predator-prey 
dynamics in general, and in host-parasite 
dynamics in particular, the relative abundances 
(densities) of each the two interacting species 
progressively reach equilibrium values 
respectively. These equilibrium values, however, 
may be either stable or, on the contrary, more or 
less strongly oscillatory, with a characteristic 
pattern, as exemplified in Fig. 1. The oscillatory 
pattern, when it occurs, is characterized by a 
constant period as well as constant shape of 
oscillations with a very sharp decreasing rate and 
a comparatively slower increasing rate, 
especially as regards the host-oscillations (Fig. 
1). In addition, the oscillations of the host and of 
the parasite densities have (of course) the same 
periodicity, with the parasite oscillations being yet 
slightly out of phase (slightly delayed) as 
compared to the host oscillations (Fig. 1). 
 
With increasing reproductive performance of the 
parasite (here, improved oviposition efficiency ‘a’ 
of the mated female of parasite species) the 
respective densities of the parasite and the host 
pass successively across three phases of 
equilibrium, labelled respectively S1, Os, S2 (see 
Figs. 2 and 3 for a typical example): 
 
I. a phase “S1” of stable equilibria, where the 

host density is at a high level, yet 
monotonically decreasing with increasing 
parasite reproductive performance ‘a’, 
while the parasite density increases 
monotonically – and rather drastically – 
from its low level; 

II. a phase “Os” of oscillating equilibria, with a 
strong unimodal variation in the amplitudes 
[hmax – hmin] and [pmax – pmin] of the 
oscillating densities of both host and 
parasite, and a parallel (but comparatively 
slight) unimodal variation in the periodicity 
of oscillation cycles; 

III. a phase “S2” of stable equilibria, where not 
only the (low) density of the host but also 
the (low) density of the parasite both 
decrease monotonically with increasing 
own reproductive performance ‘a’ of the 
parasite. 
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Fig. 3. Superposition of the respective patterns of density of the host [equation (11)] and the 
parasite [equation (12)]. Solid lines: host species; dashed lines: parasite species; fine double 

line: periodicity of cyclic oscillations (the same for both the host and the parasite) 
 
4. CHARACTERIZATION OF THE PHASE 

TRANSITIONS 
 
The host-parasite interactions are governed             
by a series of factors (seven parameters in the 
model implemented here: see section 2),                   
the combined influences of which can be 
quantified by the ratio ‘π’ = [averP/averH] 
between the average density of the parasite              
and the average density of the host. As such,     
this ratio accounts for the intensity of the 
parasitism pressure against the host, a pressure 
which, ultimately, governs the host-parasite 
interactions. In this context of interacting 
population dynamics, the ratio π can be 
considered as playing a role which appears 
reminiscent and, in a way, analogous to the role 
played by the Gibbs’ free energy in 
thermodynamics. Of course, this analogy should 
clearly be understood only as a formal analogy 
and, obviously, in no way implies real similarity in 
nature. 
 
After this reservation has been clearly 
expressed, it is worth considering the extension 
to the ecological context of the notion of phase 
transition. And in particular the extension of the 
ancient, yet classical, approach proposed by 
EHRENFEST [10] as regards the classification of 
phase-transition categories. I therefore consider 
and analyze the variations – especially the 
derivatives – of the ratio π (quantifying 
parasitism pressure) at both phase transitions:  
S1  Os and, then, Os  S2. 

The parasitism pressure π is dependent upon 
each of all seven drivers of the host-parasite 
dynamics (a, f, v, for the parasite, r for the host, 
K, eH, eP for the environmental context), so that 
the phase transitions can be investigated along 
the variations of each of these seven parameters 
separately. Yet, the more straightforward 
influence on the parasite pressure π is, of 
course, the own dynamics of the parasite species 
itself.  Accordingly, I shall focus more precisely 
on parameter ‘a’ – the mean foraging area of 
ovipositing parasite-females – as being the main 
distinctive parameter singularizing the 
reproductive performance of the parasite 
species. The case of the other parameters (f, v, r, 
K, eH, eP) will be, subsequently, briefly 
discussed. 
 
Figs. 4 to 9 illustrate the variations of the ratio π 
along a large range of values of ‘a’, 
encompassing the three characteristic phases of 
the dynamics (S1, Os, S2). As the degree of 
parasitism pressure takes on its full meaning 
when considering also the own dynamics of the 
host, four levels of inherent rate of increase, ‘r’, 
of the host are considered: medium (r = 2.0: 
Figs. 4 & 5), low (r = 1.3: Fig. 6), strong (r = 5.0: 
Fig. 7) and very strong (r = 10.0: Fig. 8). 
 
 at a “low” level of the host rate of increase, 

r = 1.3, the derivative (with respect to ‘a’) of 
the parasitism pressure π show no 
discontinuity, neither at the S1  Os, nor 
at the Os  S2 phase transitions (Fig. 6). 
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 at a “medium” level of the host rate of 
increase, r = 2.0, the parasitism pressure 
π undergoes a first order phase transition 
at S1  Os (strong discontinuity of the first 
derivative of π with respect to ‘a’), while 
the Os  S2 phase transition remains 
continuous (Figs. 4 & 5).  

 at a “strong” level of the host rate of 
increase, r = 5.0, the parasitism pressure 
undergoes a first order phase transition at 
S1  Os, which is still more conspicuous 
than at the “medium” level. At the Os  S2 
phase transition, the first derivative of π 
still remains continuous, while its second 
derivative rather sharply changes in sign, 

which might be evocative of a second 
order transition: Fig. 7. 

 at a “very strong” level of the host rate of 
increase, r = 10.0, the parasitism pressure 
undergoes a first order phase transition at 
both the S1  Os and the Os  S2 
transitions, with the former transition still 
more conspicuous than above, while the 
second transition is less pronounced: Fig. 8. 

 
The superposition of the four cases studied 
above (Fig. 9) clearly highlights the increasing 
acuteness and amplitude of the discontinuity at 
the phase transitions with increasing level of the 
own host dynamics ‘r’. 

 

 
 

Fig. 4. The ratio π between the average parasite density and the average host density (averP / 
averH, quantifying the relative parasitism pressure) plotted against increasing parasite 

reproductive (ovipositing) performance ‘a’: double line. Note the strong discontinuity of π at 
the phase transition S1  Os and the smooth transition at the phase transition Os  S2. The 
interrupted double line stands for hypothetic values of π if the oscillatory phase would not 
exist. [computed from equations (11) & (12) with K = 100, r = 2.0, f = 0.3, v = 1, eH = eP = 0.01] 

 

 
 

Fig. 5. Answer of the parasitism pressure π (double line) to increasing parasite reproductive 
(oviposition) efficiency ‘a’. Computed for host inherent rate of increase: r = 2.0 
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Fig. 6. Answer of the parasitism pressure π (double line) to increasing parasite reproductive 
(oviposition) efficiency ‘a’. Computed for host inherent rate of increase: r = 1.3 

 

 
 

Fig. 7. Answer of the parasitism pressure π (double line) to increasing parasite reproductive 
(oviposition) efficiency ‘a’. Computed for host inherent rate of increase: r = 5.0 

 

 
 

Fig. 8. Answer of the parasitism pressure π (double line) to increasing parasite reproductive 
(oviposition) efficiency ‘a’. Computed for host inherent rate of increase: r = 10.0 
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Fig. 9. The ratio π (quantifying the relative parasitism pressure) plotted against increasing 
parasite reproductive (oviposition) efficiency ‘a’ for four different values of the host 

reproductive efficiency ‘r’: r = 1.3 dotted line; r = 2.0 dashed line; r = 5.0 double line; r = 10.0 
solid line; computed from equations (11) & (12).  Note the increase of both acuteness and 

amplitude of the discontinuity of the parasitism pressure π with growing own-dynamics, ‘r’, of 
the host and, more generally, with increasing values reached by the parasitism pressure π just 

prior to the phase transition 
 

 
 

Fig. 10. The ratio π (quantifying the relative parasitism pressure) plotted against increasing 
density K of the available feeding resource for the host. Note the discontinuity of the first 

derivative of π at the phase transition S1  Os. 
[computed from equations (11) & (12) with r = 5.0, a = 5.0, f = 0.3, v = 1, eH = eP = 0.01] 

 
More generally, the higher the level reached by 
the parasitism pressure π at the approach of the 
phase transition, the stronger is the following 
sharp decline of π at the transition and, 
accordingly, the stronger is the resulting recess 
of the parasitism pressure π all across the phase 
of oscillatory equilibrium (Fig. 9). Thus – as 
schematically shown by the grey arrows in Figs. 
5, 7, 8 – entering the phase of oscillatory 
equilibrium results in a more or less substantial 
attenuation in the increase of the relative 
pressure of parasitism, despite the continuous 

increase of the own dynamics ‘a’ of the parasite 
species. And all the more so that this parasitism 
pressure has reached a higher value just before 
the transition from stable to oscillatory 
equilibrium. Similar trends are highlighted when 
considering the consequences of the variations 
of the parameters other than ‘a’, which also 
influence the parasitism pressure π, namely: f, v, 
r, K, eH, eP.  For example, increasing the density, 
K, of the available feeding resource for the host 
generates a first-order S1  Os phase transition, 
as shown in Fig. 10. 
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In fact, whatever the parameter involved (a, f, v, 
r, K, eH, eP), the higher is the resulting parasitism 
pressure π at the approach of the phase 
transition, the more acute is this phase transition 
(i.e. from continuous, to second-order, to first-
order). 
 

5. DISCUSSION 
 

The respective densities of the parasite and the 
host species (and more generally of predator and 
prey) can reach equilibrium according to two 
mutually exclusive modalities: either a stable 
mutual equilibrium or, alternatively, an oscillating 
regime leading to periodic cycles of the 
respective densities, with equilibrium being 
achieved only on average along a cycle. The 
amplitude of the cycles (which can often reach 
several orders of magnitudes for both the host 
and the parasite), as well as the somewhat 
astonishing regularity of the amplitude and 
periodicity of the cycles, both have elicited much 
attention and interest from naturalists. This very 
distinct equilibrium patterns either stable or 
oscillatory, with clear-cut transitions from one 
pattern to the other, have been fully rationalized 
in relation to variations of either the contextual 
(environmental) conditions or the varying own 
dynamics of the parasite or the host. This is a 
major outcome of having developed and 
implemented an extended version of the classical 
Nicholson & Bailey model. 
 

Besides, and from a more speculative point of 
view, these very distinct patterns of either stable 

or oscillatory equilibria, with clear-cut transitions, 
are suggestive of the notion of phases and 
phase-transitions, well-known otherwise in 
thermodynamics. The latter point has been 
addressed recently, but essentially according to 
very general perspectives [11,12], so that a more 
focused analysis was still lacking, regarding (i) 
the nature of the phase transitions between 
stable and oscillatory equilibria and (ii) how this 
nature may possibly depend (or not) on the 
biological and contextual factors driving the 
interactive host-parasite dynamics. In turn, such 
a focused analysis is another outcome of the 
prior development of the extended Nicholson & 
Bailey model, explicitly involving the above 
defined biological factors (namely: ‘a’, ‘f’, ‘v’ ; ‘r’) 
and contextual parameters (namely: ‘K’, ‘eP’, 
‘eH’), a requirement not satisfied by the very 
general models that had been implemented up to 
now in this respect. 

 
Several important aspects of the phase pattern 
and the phase-transitions, specifically relevant to 
the context of host-parasite dynamics, have been 
highlighted:  

 
I. between the phase S1 of stable equilibrium 

(at low parasitism pressure/high host 
density) and the phase Os of periodic 
oscillations,  

II. between the phase Os of periodic 
oscillations and the phase S2 of stable 
equilibrium (at high parasitism pressure/ 
low host density level). 

 

 
 

Fig. 11. Enlargement of Figure 3, focused on the phase transition S1  Os. Highlighted is the 
quite stronger breaking down of pmin, as compared to hmin  
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Among these interesting aspects, the following 
deserve being emphasized: 
 

1. The relative parasitism pressure π 
(quantified as the ratio π between average 
parasite density and average host density) 
reveals being an appropriate parameter to 
characterize the type of phase transition 
(sensu EHRENFEST) – in a manner similar 
(in formal terms, not in nature, of course) 
to the notion of Gibbs free energy, used for 
analyzing thermodynamic phase 
transitions ; 

2. There is a clear dissymmetry in the 
sharpness of the two phase transitions, S1 
 Os and Os  S2, with the former 
exhibiting a stronger degree of 
discontinuity of the derivative of parasitism 
pressure π than does the latter ; 

3. Yet, in both cases, the type of phase 
transition can be either 1st order 
(discontinuous 1

st
 derivative of π), 2

nd
 

order (discontinuous 2nd derivative of π) or 
more continuous; 

4. For both S1  Os and Os  S2 phase 
transitions, the sharpness of the transition 
goes increasing (from continuous to 2nd 
order, to 1

st
 order) with increasing level 

reached by the parasitism pressure π at 
the approach of the phase transition. And 
this stands whatever the parameter(s) – 
among ‘a’, ‘f’, ‘v’, ‘r’, ‘K’, ‘eP’, ‘eH’ – that are 
involved in the variation of the parasitism 
pressure. 

5. Entering the phase, Os, of “oscillatory 
equilibrium” seems to “spontaneously” 
trigger a kind of negative feed-back of the 
parasitism pressure π (grey arrows in Figs. 
5, 7, 8), which contribute to moderate, all 
along the oscillatory phase, the outcome of 
the “excessive” increase of the parasitism 
pressure π, reached at the end of phase 
S1. This kind of “buffering effect” all along 
the phase of “oscillatory equilibrium” – well 
highlighted in Figs. 5, 7, 8 – can be 
considered as demonstrating some kind of 
“relaxation oscillations”. 

 
Interestingly, the marked discontinuity of the 
parasitism pressure π which characterizes the 
first order transition from stable to oscillatory 
equilibrium (S1  Os), is principally due to the 
parasite answer itself, when entering the 
“oscillatory” phase. Indeed, as shown in Figs. 3 
and 11, the breaking down of the minimum 
density of the parasite during a cycle period is 
quite more severe than it is for the host. So that, 

it is this sudden and sharp breaking down of the 
parasite density during its cyclic oscillating 
pattern which mainly contribute to this buffering 
effect upon the parasitism pressure, highlighted 
all along the phase of “oscillatory equilibrium”. 
 

6. CONCLUSION  
 
Physical Science in general, and 
Thermodynamics in particular, seem having not 
much to do and share – at first sight – with the 
kind of interactions that occur between parasite 
and host (or predator and prey) in natural 
ecosystems, at least in terms of general 
concepts. However, the important notion of 
phase transitions, which, at first glance, would 
seem more typical (or even an exclusivity) of 
Physics, turns out to have suggestive extensions, 
even reaching the distant realm of living world. In 
particular, the more or less sharp and brutal 
boundaries between stable and strongly 
oscillating equilibria, in highly interactive 
parasite/host or predator/prey systems, show 
some interesting formal analogies with the sharp 
phase transitions commonly known in 
thermodynamics. Such inspiring formal analogies 
can indeed have true heuristic value, as the 
history of Science as already provides some 
examples in the past. 
 
Now, the much more modest objective and 
contributions of the present study have been, 
simply, to rationalize the connections and the 
quantitative dependences that actually exist, in 
the field, between the phase-transitions that 
frame the host-parasite (or prey-predator) 
dynamics on the one hand and, on the other 
hand, the relevant biological and contextual 
factors that drive the interactions between 
parasite and host, or predator and prey. 
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APPENDIX 
 

Derivation of an extended formulation of the Nicholson & Bailey model 
 

A.1- the classical Nicholson & Bailey model 
 

The original Nicholson & Bailey model accounts for the predator-prey interaction in discrete time and 
is more particularly (although not exclusively) designed to treat the parasite-host interaction in insects. 
 
Let ‘hi’ and ‘pi’ be, respectively, the densities (numbers of individuals per unit area of investigation) of 
the host and of the parasite, at generation ‘i'. Besides – and in accordance with the Nicholson & 
Bailey model – it is assumed that the parasite: 
 

I. is foraging at random for its selected kind of prey,  
II. avoids oviposition upon an already egg-laid prey (or, if not so, the second oviposition does not 

lead to viable offspring) and  
III. has some finite foraging area ‘a’.  
 
Under these conditions, the predicted density of parasitized-host individuals complies with a Poisson 
distribution [5, 8]. 
 
Accordingly, the densities hi, par and hi, non par of parasitized and non-parasitized hots are: 
 

hi, par = hi.(1 – exp(– a.f.pi))                                                                                                             (1) 
 

hi, non par = hi. exp(– a.f.pi)                                                                                                                (2) 
 

with ‘f’ as the proportion of mated (and thus egg-laying) females within the whole population of 
parasites. 
 

Let ‘r’ be the inherent rate of increase of the host (as it would be in the absence of any limitation in 
resource availability for the host development).  
 

Accordingly, the density of hosts at generation i+1 is: 
 

hi+1  = r.hi, non par                                                                                                                             (3) 
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that is: 
 

hi+1  =  r.hi.exp(– a.f.pi)                                                                                                                   (4) 
 
The density pi+1 of parasites at generation i+1 is proportional to the density hi, par of parasitized hosts 
at generation i: 
 

pi+1  = v.(hi, par) 
 

with ‘v’ as the average number of viable parasite individuals issued from each parasitized host 
individual (proportional, in particular, to the egg clutch-size laid by ovipositing female of the parasite). 
The density of mated ovipositing females of the parasite at generation i+1 being, accordingly, equal to 
(f.pi+1). 
 

Accounting for the expression (1) of hi, par, it comes: 
 

pi+1  =  v.hi.(1 – exp(– a.f.pi))                                                                                                         (5) 
 
Note, incidentally, that equations (4) and (5) comply with the classical formalism of HASSELL: see 
equations (1) and (2) with m = 0 in reference [8]. 
 

A. 2 The extended Nicholson & Bailey model involving both (i) the contribution of 
immigration-emigration and (ii) the limitation of available feeding resource for the host 

 

A.2.1 Immigration-emigration 
 

Let eH and eP be the additional contributions (at each generation) of the balance between the 
immigration and the emigration of host (resp. parasite), in complement to the host and parasite 
densities computed above. It comes: 
 

hi+1  =  r.hi.exp(– a.f.pi) + eH                                                                                                            (6) 
 

pi+1 = v.hi.(1 – exp(– a.f.pi)) + eP                                                                                                     (7) 
 

A.2.2  Limitation of available feeding resource for the host  
 

Moreover, let ‘R’ be the density of available feeding resource for the host insects (typically, for an 
herbivore insect, the density of leaves of the appropriate plant species, acceptable for the successful 
development of offspring) and ‘c’ the mean consummation of resource necessary to the full 
development of a host individual. Thus, the carrying capacity for the host insects (i.e. the density of 
host individuals that could be fed by the hypothetically exhaustive consummation of the available 
resource) is ‘K’, with: 
 

K = R/c                                                                                                                                           (8) 
 

The relationship between the densities of host individuals at the successive generations i and i+1, 
provided by equation (4) (or equation (6) accounting for immigration-emigration), should then be 
modified to account for the limiting carrying capacity ‘K’. 
 

The consequences of the limited availability – if any – of resource for the host depend, in particular, 
upon the pattern of intra-specific competition for this resource among co-occurring host individuals. 
Let us consider successively two extreme hypotheses in this respect. 
 

* According to a first – somewhat unrealistic – hypothesis, intra-specific competition for resource 
among co-occurring host individuals would be ideally avoided until the threshold of complete 
consummation of the entire available resource is finally reached. This would imply quite a strict 
regular pattern of distribution of eggs (and of the subsequent pattern of distribution of offspring) 
among the displayed resource, so as to prevent any scramble competition to occur at any time, until 
all available resource is actually consumed. The corresponding behavior of ovipositing host-females – 
aiming at reducing at most the loss liable to intra-specific competition – would undoubtedly have some 
positive selective value per se. Yet, on the other hand, it would also require, as emphasized above, an 
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accurate planning a priori of the spatial distribution of eggs among the displayed resource, based on a 
prior knowledge of the diet just necessary for each future larva. And this behavior of ovipositing 
females would also involve, in turn, a significant cost devoted to the recognition and the avoidance of 
already egg-laid areas, as well as an extra time-expenditure when foraging for resource to comply 
efficiently with this ideal prior planning. So that it seems finally rather unlikely that such a refined 
behavior of ovipositing females may have developed significantly (at least apart from the specific case 
of explicitly territorial species). According to this hypothetical and rather unlikely behavior, the density, 
hi+1, of host individuals at generation i+1 would simply conform to equation (6) as far as hi+1 remains 
below the carrying capacity K and, beyond, equal this capacity K. 
 
Note also that a less drastic hypothesis, which yet implies a still rather unlikely pattern of oviposition, 
leads to the very classic logistic model in discrete time: 
 

 hi+1  =  (r.hi, non par + eH).[1 – (hi, non par + eH)/K]                                                                                (9) 
 

which can provide oscillations of the host and parasite abundances that are not only periodic but also 
pseudo-periodic or even chaotic.  
 

* According to a second, opposite hypothesis, the pattern of oviposition displayed by the host-females 
(or, as well, the pattern of the subsequent distribution of offspring) is assumed being more or less 
random among the displayed resource. This implies, in turn, the absence of any particular effort from 
host-females to avoid possible intra-specific competition for resource among co-occurring host 
individuals. This second hypothesis should well deserve more particular attention, as it seems more 
likely in most host-insects, being understood that, in some case, the field reality may be somewhat an 
intermediate between these two opposite hypotheses. 
 

Assuming thus a (more or less) random distribution of eggs - and of the subsequent distribution of 
offspring - among the displayed resource, and considering the resulting degree of crowding in 
resource exploitation by host offspring, it comes, in conformity with the Poisson distribution: 
 

hi+1  =  K.[1– exp(– (r.hi, non par + eH)/K)]                                                                                         (10) 
 

That is a more progressive, asymptotic approach of the saturation of resource exploitation quantified 
by a negative exponential – which is distinctly less brutal than is, for example the linear approach to 
saturation involved in the logistic model, and still less brutal, a fortiori, than the outcome from the first 
hypothesis. 
 

Accounting for the expression (2) of hi, non par , it comes finally : 
 

hi+1  =  K.[1– exp (– (r.hi.exp(– a.f.pi) + eH)/K)]                                                                             (11) 
 

The expression (7) of the density of mated females of parasites, pi+1, remains unchanged: 
 

pi+1 = v.hi.(1 – exp(– a.f.pi)) + eP                                                                                                  (12) 
 

In contrast with the logistic model evoked above, the present model only generates regular, non-
chaotic kinds of oscillations, as a result of the more progressive approach to saturation of resource 
exploitation by the host. Indeed, this more regular oscillations are in better accordance with many field 
records. 
 

Note that: 
 

 In the inevitably oversimplified approach of the model, the interactive dynamics of the host-
parasitoid system is governed by only six main drivers: r and K [both relevant to the host]; a.f 
(whatever the respective values of a and f) and v [both relevant to the parasite]; eH and eP [both 
dependent on the environmental biological context]. All or part of these six main drivers being, 
in turn, variously dependent on the abiotic environmental context (climate, etc…).  
 

 The above equations are given in terms of the areal densities of the parasite (pi), of the host (hi) 
and of the available resource per host (K =R/c). Now, an alternative approach is to consider the 
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respective densities of the host and the parasite relative to the carrying capacity K, that is to 
consider h’i = hi/K and p’i = pi/K. This way may be preferred in some practical concerns, as h’i 
more straightforwardly highlights the degree of damage inflict by the host to the feeding 
resource, as this damage is often of practical – economic or esthetic – concern.  

 

Accordingly, equations (11) and (12) can be rewritten by replacing hi by K.h’i ; pi by K.p’i ; eH by K.e’H 
and eP by K.e’P. It comes accordingly: 
 

h’i+1 = 1– exp (– (r.h’i.exp(– a.f.K.p’i) + e’H))                                                                          (11 bis) 
 

and: 
 

p’i+1 = v.h’i.(1 – exp(– a.f.K.p’i)) + e’P                                                                                     (12 bis) 
 

A.2.3 Dependence of immigration rates of parasite and host on the average densities of 
parasite and host in the meta-population context 

 

Up to now, the immigration rates, eH and eP, have been considered constant along the time elapsed 
and the successive generations of host and parasite. In particular, no relationship has been 
considered, that would link the immigration rates of the parasite and the host to the corresponding 
densities of parasite and host in the more or less distant homologous populations. Yet, it is 
uncommon that the host and parasite populations are completely isolated from such more or less 
distant homologous populations. In this “meta-population” context, some exchanges 
(immigration/emigration) involving both the parasite and the host individuals likely exist between the 
more or less distant local populations, owing to the unavoidable partial dispersal of individuals away 
from their native locations. Accordingly, the net immigration rates, eP and eH, are expected to 
represent some definite fraction ‘ε’ of the corresponding local densities pi and hi of the parasite and 
host (or their respective averages along a cyclic period when cyclic regime actually occurs). This 
fraction ‘ε’ thus accounts for the relative intensity of the immigration contribution to the dynamics of 
the interacting host-parasite system under study. Note that, under cyclic regime, the relative 
contribution ε of immigration is modulated by the possible partial or even complete synchronization of 
cycles between the more or less distant homologous host/parasite populations. With ε decreasing with 
increasing synchronization and ε ultimately falling down to zero in the hypothesis of total 
synchronization. 
 

Let h*i and p*i be the average values of pi and hi in the meta-population system (i.e. across the 
neighboring populations); it comes accordingly, at generation i+1: 
 

eH = ε.h*i  and  eP = ε.p*i     or, as well,      e’H = ε.h’*i  and  e’P = ε.p’*i                                         (13) 
 

these expressions having to be introduced in equations (11), (12) or (11bis), (12bis) respectively. Of 
course, the value of ‘ε’ may possibly differ for the host and for the parasite species. 
 

A.2.4 Implementing the heuristic model 
 

In spite of its extended parts detailed above, this model remains of course an approximation of a far 
more complex reality. Yet, as it is, with its additional improvements as compared to the original 
Nicholson and Bailey model, it offers valuable opportunities of conceptual, speculative investigations 
and, thereby, may serve as a convenient “heuristic” tool, designed to highlight some influential trends 
regarding how the interacting dynamics of the host/parasite system actually answers various 
modifications in the driving parameters (‘a’, ‘f’, ‘v’, ‘r’, ‘K’, ‘eP’, ‘eH’) of this dynamics. 
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