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EXACT SOLUTIONS OF FRACTIONAL MAXWELL FLUID
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Abstract. In this paper the velocity field and the adequate shear stress
corresponding to the rotational flow of a fractional Maxwell fluid, between
two infinite coaxial circular cylinders with inner cylinder is at rest and
outer is moving, are determined by applying the Laplace and finite Hankel

transforms. The solutions that have been obtained are presented in terms
of generalized G functions. The expressions for the velocity field and the
shear stress are in the most simplified form. Moreover, these solutions

satisfy both the governing differential equation and all imposed initial and
boundary conditions. The corresponding solutions for ordinary Maxwell
and Newtonian fluids are recovered as limiting cases of general solutions.
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1. Introduction

Fluid has necessarily become part and parcel of daily human life. Take a look
at any material of some importance in your life and you will eventually en-
counter fluid of some type. Air, gases, water, and liquids of various types all fall
under the definition of a fluid. Consequently, basic concepts and principles of
fluid mechanics are essentially important for us. Any system in which fluid is a
working medium will be subject to analysis through the help of fluid mechan-
ics. Principles of fluid mechanics are applied on the designs of almost all means
of transportation. We can safely include the subsonic and supersonic aircrafts,
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hovercrafts, surface ships, submarines and other automobiles. Aerodynamic de-
signs which had previously been confined for racing cars and boats only are
now a subject of importance for all automobile manufacturers. Rockets, space
flights and others having propulsion systems are based on the fluid mechanics
principles. It is a common practice now to undertake prior studies on the aero-
dynamic forces around buildings and structures. The designs of some devices
like pumps, blowers, compressors and turbines require the basic knowledge of
fluid mechanics. Heating/cooling and ventilating of large underground tunnels,
mines, pipeline systems, large office buildings and even private rooms require
knowledge of fluid mechanics. Basic principles of the fluid mechanics are even
applicable in the designs of artificial hearts, heart-ling machines, breathing aids
and other such devices. All we want to do is to establish the fact that knowledge
and principles of fluid mechanics are used in industry, manufacturing, and even
in daily human life.
Having said this, we can now safely say that governing and studying the move-
ment of the fluid flow in rotating or sliding cylinders is of much importance for
industrial point of view.
Movement of a typical viscoelastic fluid i.e. fractional Maxwell fluid in rotat-
ing cylinder has been an area of keen interest for the theorists, researchers and
mathematicians working on the fluid mechanics [1, 2]. When analyzing fluid
motion, researchers are interested in use of rheological constitutive equations
with fractional derivatives, in addition to the classical rheological constitutive
equations. Time ordinary derivative are changed to fractional order derivative
to find these equations, for fractional calculus [3]. Initially Maxwell model could
not provide reasonable fit of data to be experimented for complete range of fre-
quencies and this gave birth to Fractional Maxwell model. In comparison to the
classical Maxwell model, the Fractional Maxwell fluid model can demonstrate
better agreement of the data to be experimented.
Recently, among the various flow of fluids the oscillating and rotatory flows of
fluid has attained significant attention. For example in [4] authors considered
Exact Solutions for rotating flows of a Generalized Burgers’s Fluid in Cylindrical
domains where as in [5] same has been done for Oldroyd-B fluid in circular
cylinder. Mainly the reason for this is that oscillating flows are more common in
practical processes like towing operation, oil drilling, mixing and bioengineering.
The reason for this is the flow of blood in veins due to periodic pressure gradient.
In 2005 Yin and Zhu has exhibited research paper on oscillating issues of Frac-
tional Maxwell fluid[6]. In 2012, Karam Rahaman discussed oscillating flow of
upper convected Maxwell fluid and this was done by a cylinder [7]. The pre-
cise solutions for sinusoidal motion of visco- elastic non-Newtonian fluids were
discovered by Mahmood et. al [8, 9, 10, 11, 12].
Various number of researchers are doing research since last decade to find the
exact solutions of non Newtonian fluids, particulary the ones having boundary
conditions of shear stress. The first ones to develop and come up with the
solutions were Water et. al [13]. The exact solution for the Fractional Maxwell
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fluid which have shear stress boundary condition and flow rotationally in circular
cylinder was given by Siddique [14].
Moreover, Rajagopal came up with two very firm yet simple solutions in regard
to the motion of second grade fluid which had the torsional and longitudinal
oscillation of unbounded rod. Bandelli et. al discus unsteady motions of second
grade fluid[15]. The Erdagon’s work was extended by Fetecau which had asso-
ciation to non-Newtonian fluid to cosine and sine oscillations of the flat plate
[16, 17]. The exact solution for the Maxwell fluid which had oscillatory flow in
cylinder was given by Vieru. et. al so considering all of this Laplace and Han-
kel transforms are practiced in this thesis to examine torsional sine oscillations
of Fractional Maxwell Fluid which endured shear stress in an infinite circular
cylinder [18].
According to the best knowledge of the us no attempt has so far been made to
find the solutions for the movement of fractional Maxwell fluid present within
two coaxial cylinders of infinite lengths and oscillating within.
In this article we find the exact solutions for the velocity field v(r, t) and shear
stress τ(r, t) corresponding to the motion of a Maxwell fluid between two cylin-
ders, which are infinite and coaxial with inner cylinder is at rest and outer one
is oscillating. Laplace transform and finite Hankel transform are used to ob-
tain their solutions. The solutions are presented under series form in term of
generalized G-functions. These will satisfy governing equations and all imposed
boundary and initial conditions. Furthermore the corresponding solutions for
the Maxwell flow of Newtonian fluid are also obtained in term of limiting cases.

2. Mathematical Formulation and Governing Equation of Problem

The constitutive equation for the Maxwell Fluid is defined by

T = S − pI ; λ
δS

δt
+ S = µC1; (1)

S denotes the extra stress tensor and p is the pressure, I denotes unit tensor, λ
is called relaxation time, µ is called dynamic viscosity and T stands for Cauchy
stress tensor stands for hydrostatic pressure.

δS

δt
=

dS

dt
− LS − SLT = Ṡ − LS − SLT . (2)

Assume that the Maxwell fluid is in the annulus of coaxial circular cylinders
whose radii R1 and R2 respectively, where R1 is less than R2 and lengths are
infinite. when t = 0, the fluid and two cylinders are fixed. when t > 0, the outer
cylinder starts oscillating around their axis with velocity W sin(ω t) and ω is the
angular velocity of the outer cylinder. Then the velocity field v and the extra
stress S is of the form

v = v(r, t) = v(r, t)ez, (3)

S = S(r, t), (4)
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where ez is called the unit vector in the z − direction.
In start, when the fluid is fixed, we have

S(r, 0) = 0 ; v(r, 0) = 0. (5)

The Maxwell fluid have the governing equations,(
1 + λDβ

t

)∂v(r, t)
∂t

= ν
( ∂2

∂r2
+

1

r

∂

∂r

)
v(r, t), (6)(

1 + λDβ
t

)
τ(r, t) = µ

∂v(r, t)

∂r
. (7)

The non-trivial shear stress is denoted by τ(r, t) , λ is the material constant,
µ is called the dynamic viscosity and kinematic viscosity is denoted by ν = µ

ρ ,

where ρ is constant density of the Maxwell fluid.

Furthermore, the fractional differential operator Dβ
t of the Maxwell fluid is de-

fined by [19]

Dβ
t f(t) =

1

Γ(1− β)

d

dt

∫ t

0

f(τ)

(t− τ)β
dτ, 0 ≤ β < 1 (8)

where Γ(.) is the Gamma function which can be defined as

Γ(z) =

∫ ∞

0

tz−1e−tdt ; z > 0 (9)

v (r, 0) = 0 ; r ϵ (R1, R2) (10)

v (R1, t) = 0 , v (R2, t) = V sin(Ω t) , for t > 0 (11)

3. Calculation of the Velocity Field

Now we apply Laplace transformation to equation, we have

q(1 + λqβ)v̄(r, q) = ν

(
∂2

∂r2
+

1

r

∂

∂r

)
v̄(r, q), (12)

v̄(R1, q) = 0 , v̄(R2, q) =
V Ω

q2 +Ω2
, (13)

Here q denotes the parameter of transformation.
We can define, Hankel Transform of v̄(r, q) as

V̄H(rn, q) =

∫ R2

R1

rv̄(r, q)B0(rrn)dr,

where
B0(rrn) = J0(rrn)Y0(R2rn)− J0(R2rn)Y0(rrn). (14)

Here, rn are positive roots of B0(R1r) = 0, and J0(.) and Y0(.) represent the
Bessel functions whose order is zero of first and second type, respectively.
Now consider R.H.S of the equation (12), we have,
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∫ R2

R1

r

(
∂2

∂r2
+

1

r

∂

∂r

)
v̄(r, q)B0(rrn)dr =

2

π

V Ω

(q2 +Ω2)
− r2nV̄H(rn, q). (15)

Again, from equation (12), we have the following result

q(1 + λqβ)V̄H(rn, q) = ν

[
2

π

V Ω

q2 +Ω2
− r2nV̄H(rn, q)

]
, (16)

Then,

(q + λqβ+1 + νr2n)V̄H(rn, q) =
2ν

π

V Ω

(q2 +Ω2)
. (17)

Now, simplification for V̄H(rn, q)

V̄H(rn, q) =
2

π

V Ω

(q2 +Ω2)

ν

(q + λqβ+1 + νr2n)
. (18)

we can write the above equation as,

V̄H(rn, q) =
2

πr2n

V Ω

(q2 +Ω2)
− 2V Ω

πr2n(q
2 +Ω2)

(q + λqβ+1)

(q + λqβ+1 + νr2n)
. (19)

or we can say as,

V̄H(rn, q) = V̄1H(rn, q)− V̄2H(rn, q),

where

V̄1H(rn, q) =
2

πr2n

V Ω

(q2 +Ω2)
,

and

V̄2H(rn, q) =
2V Ω

πr2n(q
2 +Ω2)

(q + λqβ+1)

(q + λqβ+1 + νr2n)
.

Now, going to define Inverse Hankel Transform,

v̄(r, q) =
π2

2

∞∑
n=1

r2nJ
2
0 (R1rn)B0(rrn)

J2
0 (R1rn)− J2

0 (R2rn)
V̄H(rn, q) (20)

Inverse Hankel Transform or V̄1H(rn, q) and V̄2H(rn, q) are

v̄1(r, q) =
ln(r/R1)

ln(R2/R1)

V Ω

q2 +Ω2
.

v̄2(r, q) =
π2

2

∞∑
n=1

r2nJ
2
0 (R1rn)B0(rrn)

J2
0 (R1rn)− J2

0 (R2rn)
V̄2H(rn, q).

Now,
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v̄(r, q) =
ln(r/R1)

ln(R2/R1)

V Ω

q2 +Ω2
− π2

2

∞∑
n=1

r2nJ
2
0 (R1rn)B0(rrn)

J2
0 (R1rn)− J2

0 (R2rn)
×
[

2V Ω

πr2n(q
2 +Ω2)

(q + λqβ+1)

q + λqβ+1 + νr2n

]
. (21)

or,equivalently

v̄(r, q) =
ln(r/R1)

ln(R2/R1)

V Ω

q2 +Ω2
− π

∞∑
n=1

J2
0 (R1rn)B0(rrn)

J2
0 (R1rn)− J2

0 (R2rn)
×
[

V Ω

(q2 +Ω2)

(q + λqβ+1)

q + λqβ+1 + νr2n

]
. (22)

Now by using the identity,

1

q + λqβ+1 + νr2n
=

1

λ

∞∑
k=0

(
−νr2n
λ

)k
q−k−1

(qβ + 1
λ )

k+1
. (23)

as,

1

a+ z
=

∞∑
k=0

(−z)k

ak+1
. (24)

v̄(r, q) =
ln(r/R1)

ln(R2/R1)

V Ω

q2 +Ω2
− π

λ

∞∑
n=1

J2
0 (R1rn)B0(rrn)

J2
0 (R1rn)− J2

0 (R2rn)
×
[

V Ω

(q2 +Ω2)

∞∑
k=0

(
−νr2n
λ

)k
q−k−1

(qβ + 1
λ )

k+1
(q + λqβ+1)

]
, (25)

v̄(r, q) =
ln(r/R1)

ln(R2/R1)

V Ω

q2 +Ω2
− V π

∞∑
n=1

J2
0 (R1rn)B0(rrn)

J2
0 (R1rn)− J2

0 (R2rn)

∞∑
k=0

(
νr2n
λ

)k

×
[
Ω

q

(q2 +Ω2)

q−k−1

(qβ + 1
λ )

k

]
. (26)

Taking inverse Laplace transformation and using the formula

£−1
[ qb

(qa − d)c

]
= Ga,b,c(d, t), (27)

and also by using the convolution theorem we get,

v(r, t) =
ln(r/R1)

ln(R2/R1)
V sin(Ωt)− V π

∞∑
n=1

J2
0 (R1rn)B0(rrn)

J2
0 (R1rn)− J2

0 (R2rn)

∞∑
k=0

(
−νr2n
λ

)k
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Ω

∫ t

0

cosΩ(t− τ)Gβ,−k−1,k(−λ−1, τ)dτ

]
. (28)

4. Calculation of the shear Stress

Now taking Laplace transformation of (7)[
(1+λDβ

t )τ(r, t)
]
= £

[
µ∂v(r,t)

∂r

]
τ̄(r, q)+λqβ τ̄(r, q) = µ∂v̄(r,q)

∂r τ̄(r, q)
[
1+λqβ

]
=

µ∂v̄(r,q)
∂r ,

τ̄(r, q) =
µ

(1 + λqβ)

∂v̄(r, q)

∂r
. (29)

we have

∂v̄(r, q)

∂r
=

1

ln(R2/R1)

1

r

V Ω

q2 +Ω2
+ V π

∞∑
n=1

rnJ
2
0 (R1rn)B̃0(rrn)

J2
0 (R1rn)− J2

0 (R2rn)

∞∑
k=0

(
νr2n
λ

)k

×
[
Ω

q

(q2 +Ω2)

q−k−1

(qβ + 1
λ )

k

]
, (30)

τ̄(r, q) =
µ

(1 + λqβ)

[
1

ln(R2/R1)

1

r

V Ω

q2 +Ω2
+ V π

∞∑
n=1

rnJ
2
0 (R1rn)B̃0(rrn)

J2
0 (R1rn)− J2

0 (R2rn)

∞∑
k=0

(
νr2n
λ

)k

×
(
Ω

q

(q2 +Ω2)

q−k−1

(qβ + 1
λ )

k

)]
, (31)

τ̄(r, q) =
µ

λ

[
1

ln(R2/R1)

1

r

V Ω

q2 +Ω2

1

qβ + 1
λ

+ V π
∞∑

n=1

rnJ
2
0 (R1rn)B̃0(rrn)

J2
0 (R1rn)− J2

0 (R2rn)

∞∑
k=0

(
νr2n
λ

)k[
Ω

(
q

q2 +Ω2

q−k−1

(qβ + 1
λ )

k+1

)]]
, (32)

τ(r, t) =

[
µ

λ

][
1

ln(R2/R1)

V

r

∫ t

0

sinΩ(t− τ)Gβ,0,1(−λ−1, τ)dτ+

V π
∞∑

n=1

rnJ
2
0 (R1rn)B̃0(rrn)

J2
0 (R1rn)− J2

0 (R2rn)

∞∑
k=0

(
−νr2n
λ

)k

×
(
Ω

∫ t

0

cosΩ(t− τ)Gβ,−k−1,k+1(−λ−1, τ)dτ

)]
. (33)
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5. Limiting Cases

5.1. Ordinary Maxwell Fluid. By putting α → 1,β → 1 in the above results,
Velocity Field:

v(r, t) =
ln(r/R1)

ln(R2/R1)
(V sinΩt)− V π

∞∑
n=1

J2
0 (R1rn)B0(rrn)

J2
0 (R1rn)− J2

0 (R2rn)

∞∑
k=0

(
−νr2n
λ

)k

×
[
Ω

∫ t

0

cosΩ(t− τ)G1,−k−1,k(−λ−1, τ)dτ

]
. (34)

Shear Stress:

τ(r, t) =

[
µ

λ

][
1

ln(R2/R1)

V

r

∫ t

0

sinΩ(t− τ)G1,0,1(−λ−1, τ)dτ+

V π
∞∑

n=1

rnJ
2
0 (R1rn)B̃0(rrn)

J2
0 (R1rn)− J2

0 (R2rn)

∞∑
k=0

(
−νr2n
λ

)k

×
(
Ω

∫ t

0

cosΩ(t− τ)G1,−k−1,k+1(−λ−1, τ)dτ

)]
. (35)

5.2. Newtonian Fluid. By placing λ → 0, λr → 0 in the last consequences of
ordinary Maxwell fluid, we can get the results for newtonian fluid.

v(r, t) =
ln(r/R1)

ln(R2/R1)
(V sinΩt)− V π

∞∑
n=1

J2
0 (R1rn)B0(rrn)

J2
0 (R1rn)− J2

0 (R2rn)(
−Ωνr2n

Ω2 + ν2r4n
exp(−νr2nt) +

Ωνr2n
Ω2 + ν2r4n

cosΩt+
Ω2

Ω2 + ν2r4n
sinΩt

)
. (36)

Above result is similar to the result which already established in [1].

τ(r, t) = µ

[
1

r

1

ln(R2/R1)
(V sinΩt) + V π

∞∑
n=1

rnJ
2
0 (R1rn)B̃0(rrn)

J2
0 (R1rn)− J2

0 (R2rn)(
−Ωνr2n

Ω2 + ν2r4n
exp(−νr2nt) +

Ωνr2n
Ω2 + ν2r4n

cosΩt+
Ω2

Ω2 + ν2r4n
sinΩt

)]
. (37)

6. Conclusion

The purpose of this work is to find exact solutions for velocity field and adequate
shear stress corresponding to the flow of Maxwell fluid between two longitudi-
nally oscillating circular cylinders, whose lengths are infinite, with fractional
derivatives. The motion of the fluid is produced by outer cylinder where inner
cylinder is fixed, at time t = 0+. It is worthwile to note that results obtained
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in [1] are special cases of our results. Finally we recover corresponding solutions
for ordinary Maxwell and Newtonian fluids are as limiting cases.

7. Appendix

Followings are some expressions used in the text:
(A1). The finite Hankel transform of the funcion

a(r) =
C1 ln(R2/r) + C2 ln(r/R1)

ln(R2/R1)
.

satisfying a(R1) = C1 and a(R2) = C2 is

an(r) =

∫ R2

R1

ra(r)B0(rrn)dr =
2C2

πr2n
− 2C1

πr2n

J0(R2rn)

J0(R1rn)
.
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