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Integration of maximum crop response with machine learning regression 
model to timely estimate crop yield
Qiming Zhou and Ali Ismaeel

Department of Geography, Hong Kong Baptist University, Hong Kong, China

ABSTRACT
Timely and reliable estimation of regional crop yield is a vital component of food security 
assessment, especially in developing regions. The traditional crop forecasting methods need 
ample time and labor to collect and process field data to release official yield reports. Satellite 
remote sensing data is considered a cost-effective and accurate way of predicting crop yield at 
pixel-level. In this study, maximum Enhanced Vegetation Index (EVI) during the crop-growing 
season was integrated with Machine Learning Regression (MLR) models to estimate wheat and 
rice yields in Pakistan’s Punjab province. Five MLR models were compared using a fivefold 
cross-validation method for their predictive accuracy. The study results revealed that the 
regression model based on the Gaussian process outperformed over other models. The best 
performing model attained coefficient of determination (R2), Root Mean Square Error (RMSE, t/ 
ha), and Mean Absolute Error (MAE, t/ha) of 0.75, 0.281, and 0.236 for wheat; 0.68, 0.112, and 
0.091 for rice, respectively. The proposed method made it feasible to predict wheat and rice 6– 
8 weeks before the harvest. The early prediction of crop yield and its spatial distribution in the 
region can help formulate efficient agricultural policies for sustainable social, environmental, 
and economic progress.
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1. Introduction

The current world population of 7.6 billion is expected to 
increase by up to 9.8 billion by 2050, with most popula
tion growth in developing countries of Asia and Africa 
(United Nations 2019). Future dietary requirements of 
these developing nations will require a regular increase in 
agriculture production by maintaining a stable agroeco
system. A changing climate is also a profound threat to 
the food security of developing regions. Agriculture poli
cies play a vital role in achieving productivity growth and 
raising an agrarian society’s overall economic status 
(Simoncini et al. 2019). An effective agriculture policy 
relies on timely and accurate crop yield information to 
better manage supply and demand to ensure food secur
ity in the region (Maya Gopal and Bhargavi 2019). 
Additionally, a thorough picture of crop yield status 
helps control market swings that can be extremely dis
ruptive in regions with an agriculture-based economy 
(Giannakis and Bruggeman 2015).

Crop yield monitoring in developing countries is 
mainly based on two types of sampling surveys. The 
early crop yield prediction is based on subjective sur
veys, like taking opinions from growers and the field 
officers’ visual judgment. The later crop yield estima
tion is done using objective surveys such as a whole 
plot harvest or crop cut measurement from sample 
fields (Craig and Atkinson 2013). The sampling sites 
for a region are selected through a systematic random 

sampling scheme, and the small data sets often do not 
reflect the complete status of the seasonal croplands as 
samples are only collected from accessible fields. This 
labor-intensive crop monitoring system can be an 
adequate provision for overall agriculture manage
ment, but the crop yield estimation through this 
mechanism is time-consuming with large associated 
uncertainties. Moreover, final estimates of crop yields 
at a national scale are finalized after months of a crop 
harvest, making it challenging to take timely decisions 
of import and export to ensure food security and 
economic growth.

Satellite remote sensing is a cost-effective tool for real- 
time monitoring and crop status assessment (Fritz et al. 
2019). Earth-orbiting satellites capture essential informa
tion about vegetation conditions over large areas with 
frequent revisits. Medium to coarse spatial resolution 
data from different satellites (e.g. Sentinel, SPOT, 
Landsat, and MODIS) are freely available for analyzing 
vegetation conditions at the regional and global scales 
(Jianxi Huang et al. 2019). Many recent studies have used 
remote sensing derived biophysical parameters in Crop 
Growth Models (CGM) to estimate crop yields. These 
biophysical parameters include leaf area index, soil 
moisture, the fraction of absorbed photosynthetically 
active radiation, evapotranspiration, and above-ground 
biomass. The use of these data in CGM has helped the 
researchers to evaluate different crop management 
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strategies for improving the crop yield at the regional and 
global scales (Jin et al. 2018). However, the need for local 
calibration makes it difficult to apply the CGM in devel
oping countries where data scarcity often presents 
a prohibitive obstacle. The lack of spatial data to capture 
the heterogeneity of land surface also makes the CGM 
application misleading at the local scale.

Statistical modeling seems to be a more reason
able approach for data scarce regions. A regression 
model can be built between reported crop yield and 
remote sensing derived Vegetation Index (VI). 
Although regression models are considered region- 
specific and time-dependent, they can effectively 
fulfill spatiotemporal yield gaps by mapping regio
nal crop yield at a fine scale within the study period 
(Lobell 2013). Previous studies like Jingfeng Huang 
et al. (2013) used Normalized Difference Vegetation 
Index (NDVI) derived from NOAA AVHRR to 
develop a stepwise regression model to estimate 
crop yield in major rice grown provinces of China. 
Petersen (2018) developed a multivariate regression 
model using indices derived from MODIS to predict 
the real-time yield of corn, soybean, and sorghum 
for the continent of Africa. The proposed methods 
in these studies do not need to map crop cover 
areas and utilize the monthly anomalies of indices 
to measures relative vegetation health.

More recently, Liu et al. (2019) compared the results 
of yield estimation on aggregated croplands and masks 
of specific crops in Canada. A better correlation was 
found between MODIS two-band Enhanced Vegetation 
Index (EVI2) at the peak growth stage of the crop and 
its national yield using crop-specific masks. A multi- 
linear regression model was developed to estimate the 
crop yields of winter wheat, corn, and soybean. 
Machine Learning(ML) methods in solving complex 
non-linear problems have also been utilized in crop 
yield prediction using remote sensing data. Johnson 
et al. (2016) employed these methods to predict yield 
canola, barley, and spring wheat using NDVI and EVI 
data. Two non-linear models (Bayesian Neural 
Networks and model-based recursive partitioning) 
were used to estimate crop yield in Canadian Prairies. 
In addition, recent studies are utilizing Machine 
Learning Regression (MLR) approaches with remote 
sensing data to tackle multiple cropland issues in a geo- 
spatial modeling environment (Prins and Van Niekerk 
2020; Ujoh, Igbawua, and Ogidi Paul 2019; Mfuka, 
Byamukama, and Zhang 2020).

The advances in machine learning algorithms and 
increasing availability of multitemporal remote sen
sing data have largely helped to deal with data non
linearity and multi-dimensionality, which often create 
difficulties in applying regression models. Taking the 
advantages, this research aims (1) to develop a method 
using remote sensing data and machine learning 
regression models to estimate crop yield of wheat 

and rice in a large crop-production region; (2) to 
compare the performances of different regression 
models to identify the most suitable one for the yield 
prediction of each crop; and (3) to analyze the spatial 
variation of crop yield across the study region and to 
evaluate the proposed prediction model for pre- 
harvest yield forecasting. This study will help man
agers formulate efficient agricultural policies to 
improve crop production in low-performing regions 
to benefit society.

2. Material and methods

2.1. Study area

The study area for this research is the Punjab province 
of Pakistan, which has the largest share (73%) of the 
country’s total cropped area (Figure 1). Wheat and 
rice, along with cotton and sugarcane, are the cash 
crops of this region. Punjab contributes 76% of wheat 
and 56% of rice in total national production 
(Dempewolf et al. 2014; Rehman et al. 2017). Wheat 
is the main crop of the Rabi season (November to 
April of the next year). Rice is the main crop in the 
Kharif season (May to October). The period of study 
was from November 2002 to October 2018. All dis
tricts that had wheat and rice cultivated area greater 
than 50 kHa were used to estimate the crop yield. The 
change (%) of wheat and rice cultivation area based on 
reported statistics in selected districts since 2003 is 
shown in Figure 1. No more than a 3% increase and 
a 1% decrease were observed for each selected district. 
A total of 16 years of historic EVI and reported crop 
statistics of both crops were used for this research.

2.2. Reported crop statistics

Under the directorate of agriculture, the Crop 
Reporting Service (CRS) is responsible for producing 
district level crop statistics for the Government of 
Punjab. The CRS Punjab has 1038 crop reporters 
that collect field data from 1240 sample villages. 
These sample villages account for 5% of Punjab’s 
total villages and are selected for 5 years through 
stratified random sampling. The CRS generates 
three survey reports for each major crop. The first 
survey is a visual inspection of field reporters in 
sample villages to estimate the crop cultivated area 
after completing each crop’s sowing period. 
The second inspection is done in the middle of 
crop season to prepare a list of all fields of 
a particular crop in the sample village, known as 
a frame of concerned crop. It also helps forecast 
crop yield based on grower’s opinion, availability of 
input products, weather conditions, and field officers’ 
expert judgment.
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The third survey is taken during the harvest season 
by measuring crop yield in three experimental plots of 
20 × 15 ft. These plots are selected randomly within 
each sample village using the crop frame. The sample 
data is interpreted and aggregated at the district by the 
statistical experts of CRS. The final crop production 
estimates are generated using crop areas generated 
through a complete census at the district level. This 
complete enumeration of crop area in each district is 
carried out by field officers of the Department of 
Revenue, Pakistan. CRS estimates the final crop pro
duction by multiplying district level measured yield 
values with the final area values. For this study, dis
trict-level crop yield data of wheat and rice was col
lected from CRS for the study period.

2.3. Remote sensing data

Two satellites Terra and Aqua carries a sensor 
Moderate Resolution Imaging Spectroradiometer 
(MODIS) that record the reflection from the earth in 
36 different spectral bands. Two MODIS products 
MOD13Q1 and MYD13Q1 from Terra and Aqua, 
respectively, contain EVI data that was used in this 
study. These products have a spatial resolution of 
250 m, and their composite temporal resolution is 8 
days. A total of 46 images complete one calendar year. 
Based on the study area’s crop calendar, images from 
Nov 2003 to Oct 2018 were used for this analysis. 
Three tiles (h24v05, h23v05, and h24v06) covers the 
entire study area.

2.4. Overall methodology

The flow diagram of the procedure adopted for this 
research is shown in Figure 2. An eight-day temporal 
MODIS-EVI at 250 m spatial resolution was first stacked 

by seasons for rice and wheat crops. A six-month EVI 
stack from November to April next year was prepared for 
the wheat crop. For the rice crop, a six-month EVI stack 
from May to October was prepared. From EVI stacks of 
rice and wheat, the maximum seasonal EVI (EVImax) was 
extracted for each crop season. The Day of the Year 
(DOY) for EVImax was used to evaluate the model’s pre- 
harvest prediction ability. As no significant areal change 
in rice and wheat croplands in the selected districts, an 
existing crop cover data set was used to extract the 
EVImax values. To match the reported crop yield data, 
the district average EVImax was calculated for input to 
MLR models. The best performing MLR model for each 
crop was then selected to simulate the crop yield using 
the EVImax value.

2.5. Machine learning regression models

2.5.1 Linear Regression (LR)
The linear regression models have been used in many 
previous yield estimation studies to indicate a linear or 
exponential relationship to single or multiple variables 
(Hou et al. 2019; Gaso, Berger, and Ciganda 2019). The 
slope and intercept are the two parameters that describe 
the linear relationship between the dependent and inde
pendent variables. To accommodate multiple depen
dent variables in LR modeling, a stepwise regression 
analysis is often used to eliminate non-significant vari
ables in the linear expression. The other machine learn
ing methods are more efficient in handling predictor 
variables’ nonlinearity than simple LR models 
(Chlingaryan, Sukkarieh, and Whelan 2018).

2.5.2 Support Vector Regression (SVR)
In ML methods, a Support Vector Machine (SVM) is 
a training-based discriminative model that offers various 
distinctive edges in handling complex multidimensional 

Figure 1. The district-level variation of change (%) in wheat and rice cultivated area since 2003.

476 Q. ZHOU AND A. ISMAEEL



data using hyperplane (Schölkopf and Smola 2001). 
Apart from being used as a classification method, SVM 
can also be used as a regression model with a few minor 
differences. The support vector regression model main
tains all the main elements that distinguish the algorithm, 
i.e. maximal margin. Different kernel functions such as 
linear and Radial Basis Function (RBF) enable the SVR to 
operate in higher dimensions. For linear SVR, the func
tion used to predict values f xð Þ depending on the sup
port vectors can be mathematically expresses as: 

f xð Þ ¼
XN

i¼1
ai � ai

�ð Þ:hxi; xi þ b (1) 

Where xi is the number of training dataset in 
N observations, ai and ai

� are non-negative real num
bers known as Lagrange multipliers, and b is the 
intercept.

2.5.3 Decision Tree Regression (DTR)
A decision tree regression model is a non-parametric 
supervised ML method that develops a hierarchical 
tree structure by learning from training data. The 
DTR model divides the data into smaller subsets 
using decision nodes and leaf nodes. A decision node 
has further sub-classes, while the leaf node has an 
associated decision value (M. Xu et al. 2005). A deep 
tree structure leads to complex decision rules and is 
prone to overfitting. Alternately, to mitigate the pro
blem of overfitting, multiple coarse decision tree struc
tures are combined in Ensemble Learning Regression 

(ELR) for prediction. There are two commonly used 
ensemble methods. One method is to group decision 
trees is in parallel order called Bagging, and the other 
is in sequential order called Boosting. Bagging is used 
to reduce the variance in estimation by creating multi
ple random samples from the original dataset to train 
multiple models individually. The final predictions are 
determined by combining the predictions from all 
individual models. Boosting is an iterative method 
that alters the weight of an observation based on the 
last prediction. The main goal of boosting is to achieve 
higher accuracy (Zhou 2012). The mathematical 
expression of DTR is similar to LR model and nodes 
are defined using standard deviation and variance 
formulas.

2.5.4 Gaussian Process Regression (GPR)
The Gaussian process regression is another non- 
parametric kernel-based probabilistic model that 
makes a significant ML application impression. 
A well-trained GPR model not only predicts the 
response variable but also quantifies the uncertainty 
associated with it. The random fluctuations and the 
coefficients are estimated from the training data. 
A GPR is a function space model and supposes that 
the covariance between any two random variables is 
a multivariate Gaussian. A multivariate Gaussian is 
defined by its mean and covariance (kernel) function. 
The kernel function defines the spatial or temporal 
similarities between two random variables. There are 
multiple kernel functions (e.g. rational quadratic and 

Figure 2. The flow diagram of the procedure adopted for this research.

GEO-SPATIAL INFORMATION SCIENCE 477



marten 5/2) available to choose from that capture the 
smoothness of the response variables. As GPR model 
is probabilistic model, an instance of response y can be 
modeled as: 

P yijf xið Þ; xið Þ,N yijh xið Þ
Tβþ f xið Þ; σ2

� �
(2) 

Where P yijf xið Þ; xið Þ is the density of the sample, σ2 is 
the noise in the density, f xið Þ is a latent variable 
developed for each observation xi, h is explicit basis 
function, and β is a coefficient vector. More details on 
different parameters of GPR model can be found in 
Rasmussen (2003). The present study has compared 
LR, SVR, DTR, ELR (both bagged and boosted), and 
GPR models to predict crop yield in selected districts. 
The Bayesian optimization with 50 iterations was used 
to fine-tune hyperparameters in all MLR models.

2.6. Model evaluation

All regression models used fivefold cross-validation to 
indicate model performance in yield estimation. In the 
fivefold cross-validation, for each MLR model, the 
whole data is randomly divided into training and 
testing datasets for five simulations. The average 
value of evaluating coefficients from five simulations 
depict each model’s efficacy. The comparison of all 
regression models led to the selection of the best pre
dictive model for each crop. The best selected, trained 
model was used to simulate pixel-level crop yield 
information for the entire study period. The coeffi
cient of determination (R2), Root Mean Square Error 
(RMSE), and Mean Absolute Error (MAE) were used 
to evaluate each model. The formulas for R2, RMSE, 
and MAE for one simulation are given below: 

R ¼
Pn

i¼1 xi � �xð Þ yi � �yð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1 xi � �xð Þ
2� � Pn

i¼1 yi � �yð Þ
2� �q (3) 

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn

i¼1 xi � yið Þ
2

n

s

(4) 

MAE ¼
Pn

i¼1 xi � yij j

n
(5) 

Where xi and yi are the individual reported and esti
mated crop yield during the whole study period 
(2003–2018); �x and �y are the average values of 
reported and estimated yields in that period, respec
tively, and n is the total sample size for each crop. The 
higher value of R2 and lower value of RMSE and MAE 
indicated a better performing model.

3. Results

3.1. Evaluation of MLR models

The comparison of five MLR models in predicting 
crop yield of rice and wheat using EVImax is shown 
in Table 1. A fivefold cross-validation was used to 
evaluate each model. The GPR model outperformed 
in predicting yield for both crops. For wheat crop, it 
achieved R2 of 0.75 with RMSE and MAE of 0.281 (t/ 
ha) and 0.236 (t/ha), respectively. In comparison, the 
performances of other MLR models are lower but still 
acceptable for wheat yield prediction with R2 > 0.60. 
For example, the LR was the least efficient model but 
still achieved 0.64, 0.351 (t/ha), and 0.290 (t/ha) for R2, 
RMSE, and MAE, respectively. For rice crop, GPR 
model attained R2 = 0.68, RMSE = 0.112 (t/ha), and 
MAE = 0.091 (t/ha). The DTR model was the least 
accurate in predicting rice yield with MAE = 0.154 (t/ 
ha). For both crops, the SVR model performed 
the second best with small margins compared to 
GPR for predicting wheat and rice yield. At the dis
trict-level, the scatter plot between reported crop yield 
and simulated crop using the GPR model is shown in 
Figure 3 for both wheat and rice.

3.2. Spatial variation of crop yield

A district-level trained GPR model was further used to 
simulate the pixel-level yield information from 2003 to 
2018. Figure 4 shows the spatial variation of average 
wheat yield at the pixel-level and district-level simu
lated using the GPR model during the study period. 
The results indicated that for the past 16 years an 
average annual yield of 2.60 (t/ha) with a standard 
deviation of ±0.48 (t/ha) was produced in the study 
area. The maximum wheat yield was observed in the 
Gujranwala district with an average of 3.19 ± 0.23 (t/ 
ha). On average, the arid districts of Punjab province 
(Chakwal, Rawalpindi, and Attock) have the lowest 
yield of wheat (1.52 ± 0.27 t/ha) throughout the 
study period. The maximum yield variation of 0.41 
(t/ha) was observed in the Rajanpur district, with an 
average yield of 2.53 (t/ha) during the study period. In 
southern Punjab, Khanewal, and Lodhran have the 

Table 1. The evaluation statics of five MLR models in predict
ing wheat and rice yield using EVImax value.

Crop MLR models R2 RMSE MAE

Wheat LR 0.64 0.351 0.290
DTR 0.67 0.313 0.261
SVR 0.73 0.290 0.242
GPR 0.75 0.281 0.236
ELR 0.69 0.302 0.254

Rice LR 0.55 0.139 0.146
DTR 0.51 0.141 0.154
SVR 0.65 0.128 0.102
GPR 0.68 0.112 0.091
ELR 0.51 0.155 0.120
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highest wheat yield with an average of 2.97 ± 0.31 (t/ 
ha). Central Punjab has an average yield of 2.67 ± 0.21 
(t/ha).

The spatial variation of an average rice yield from 
2003 to 2018 simulated by the GPR model is shown in 
Figure 5. The selected districts had an average yield of 
1.86 ± 0.09 (t/ha) in the past 16 years. The maximum 
rice yield was estimated in the Gujranwala district 
(with an average of 2.06 ± 0.11 (t/ha)), while the 
Gujarat district had the least seasonal yield (with an 
average of 1.76 ± 0.07 (t/ha)). In Punjab province, the 
varieties of cultivated rice are divided into three main 
categories: a) basmati rice, b) long grain/non-basmati 
rice, and c) coarse/medium rice. The basmati and long 
grain/non-basmati have a similar yield percentage but 
the coarse/medium rice has a higher yield. The 
selected rice districts of this study are mostly culti
vated under basmati or long grain/non-basmati 

variety. The coarser rice is mostly sown in the south
ern part of Punjab and Sindh province of Pakistan and 
is not considered in this study.

3.3. Timely yield estimation

The rice and wheat crops reach to the EVImax value in 
the middle of their growth cycle during the greening 
stage. The day of the year to reach EVImax was studied 
for each crop during the study period to assess the 
effectiveness of the proposed method on timely yield 
prediction. The median value of DOY of EVImax and 
its spatial variation during the study period for both 
crops is shown in Figure 6. More than 75% of the area 
with wheat crop shows EVImax in the two weeks of 
mid-February. The harvesting period of the wheat 
crop is from mid-April to mid-May. This implies 

Figure 3. A district-level scatter plot comparison between reported and simulated yield of rice and wheat using the GPR model.

Figure 4. The pixel-level and district-level spatial variation of average wheat yield simulated using the GPR model during the study 
period.
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that the wheat yield can be predicted using the EVImax 

with GPR model 7–8 weeks before the harvest.
Similarly, for the rice region, more than 70% of the 

cultivated area shows EVImax in the last two weeks of 
August. The rice harvesting season is from mid- 
October to late-November. The prediction of rice 

yield can be achieved 6–7 weeks before the start of 
the harvest. The spatial variation of EVImax can also 
provide a general trend of crop harvest. In general, the 
wheat is harvested in the southern area earlier than in 
the northern area. The spatial trend of EVImax can be 
analyzed according to various climatic conditions, 

Figure 5. The spatial variation of an average rice yield from 2003–2018 simulated by the GPR model.

Figure 6. The median value of the day of the year for EVImax occurrence and its spatial variation during the study period for both 
crops.

480 Q. ZHOU AND A. ISMAEEL



cropping sequence, and crop varieties cultivated 
throughout the region. However, this association ana
lysis is beyond the scope of this study.

4. Discussion

The crop yield estimation is of paramount importance 
in recent times, especially for developing countries 
where food production is under high pressure. 
Satellite remote sensing data provides regular updates 
about crop conditions throughout its growth cycle. 
Many past studies have analyzed crop yield relation 
with remote sensing derived parameters at different 
crop growth stages. Most studies pointed out that the 
VIs and biophysical parameters around the crop’s 
peak season are positively correlated with final yields 
for various crops (Dempewolf et al. 2014; Bolton and 
Friedl 2013; Sakamoto, Gitelson, and Arkebauer 2013; 
Ren et al. 2008). However, developing regression 
based on a single day VI during peak growth duration 
for a vast area is problematic as crop sowing time 
changes from one field to another. Climatic conditions 
throughout the region also played a crucial role in 
deciding the start of the crop season. To compensate 
this, these studies used the spatiotemporally aggre
gated information of crop phenology to estimate 
crop yield. Most past studies have also overlooked 
the use of cropland masks for aggregating remote 
sensing VI values to regress against reported crop 
yield that can be misleading in crop yield estimation 
and its spatial variation.

In this study, a crop mask was used to select VI 
values of a specific area. The use of the season’s max
imum EVI compensated for the variation in the crop’s 
sowing timing and simplified the use of suitable crop 
phenology information for regression purposes. The 
seasonal EVImax was then used to train various MLR 
models, and their prediction ability was compared to 
select the one with the best performance. This EVImax 

based approach, however, cannot cater to the impact 
of extreme weather events after the crop’s greenness 
stage as these events can greatly affect the crop yield 
during the critical stage of ripening before the harvest. 
Abbas and Mayo (2020) studied the effect of rainfall 
and temperature on rice production in Punjab, 
Pakistan, and reported a negative impact of rainfall 
during the rice ripening stage and its production. Crop 
lodging is a major yield-reducing factor that is con
nected to extreme weather events. The crop lodging 
during the ripening stage can seriously damage the 
production of cereal crops (Niu et al. 2016).

Nevertheless, this study has proven that the use of 
EVImax with the GPR model can provide a reasonable 
estimate of crop productivity 7 weeks before the har
vest. The DOY analysis based on MODIS has identi
fied the spatial patterns of EVImax occurrence 

throughout the region. Further studies using fine reso
lution remote sensing data based on identified DOY 
can improve the spatial resolution and quality of yield 
prediction. The timely information on the productiv
ity of primary cereal crops helps to ensure regional 
food security and regulates market prices in regions 
with an agro-based economy. The spatial mapping of 
yield levels can also help policymakers improve the 
crop productivity of underperforming areas.

Furthermore, the pixel-level information of crop 
productivity levels can help to derive actual spatial 
diversity of crop management practices in the region. 
These management practices include the actual levels 
of irrigation and farm chemicals (fertilizers and pesti
cides) being applied in the region. Steduto et al. (2012) 
have expensively reported the direct nexus between 
crop water used and its yield for multiple crops includ
ing wheat and rice. Similarly, studies (Xu et al. 2019; 
Havlin and Heiniger 2020) have reported positive 
impact of soil fertility on crop yield. Therefore, by 
extrapolating the results of study, one can indirectly 
estimate the actual levels of crop management practices 
in the region that is a valuable information for a data- 
scarce developing regions like Pakistan. The informa
tion of DOY for EVImax can be further explored to 
derive indirectly the crop calendar events (like crop 
sowing and harvest time) at regional scale. Such local- 
scale information of diverse crop management prac
tices are a valuable input to robustly assess the impacts 
of changing climate on regional crop productivity.

5. Conclusions

This paper reports a study to develop an efficient crop 
yield forecasting model with a case study in a diversified 
agriculture region of Punjab, Pakistan. The crop-specific 
EVImax from MODIS was used to train and test the 
predictive ability of five machine learning regression 
models. The GPR model was identified as the best 
prediction model for the yields of rice and wheat 
crops. The analysis of EVImax revealed that the proposed 
method is capable of estimating wheat yield 7–8 weeks 
and rice yield 6–7 weeks before the harvest. Further 
studies using fine spatial resolution remote sensing data
sets and incorporating the spatial information of EVImax 

occurrence derived from this study will enhance yield 
results. The findings and method developed in this 
study would help to forecast regional crop productivity 
and produce timely crop yield predictions well before 
the harvest, which can help better management of crop 
market, food security, and rural development.
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