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VNLSTM-PoseNet: A novel deep ConvNet for real-time 6-DOF camera 
relocalization in urban streets
Ming Lia,b, Jiangying Qina, Deren Lia, Ruizhi Chen a, Xuan Liaoc and Bingxuan Guoa

aState Key Laboratory of Information Engineering in Surveying Mapping and Remote Sensing, Wuhan University, Wuhan, China; 
bDepartment of Physics, ETH Zurich, Zurich, Switzerland; cDepartment of Land Surveying and Geo-informatics, The Hong Kong Polytechnic 
University, Hong Kong, China

ABSTRACT
Image-based relocalization is a renewed interest in outdoor environments, because it is an 
important problem with many applications. PoseNet introduces Convolutional Neural Network 
(CNN) for the first time to realize the real-time camera pose solution based on a single image. In 
order to solve the problem of precision and robustness of PoseNet and its improved algorithms 
in complex environment, this paper proposes and implements a new visual relocation method 
based on deep convolutional neural networks (VNLSTM-PoseNet). Firstly, this method directly 
resizes the input image without cropping to increase the receptive field of the training image. 
Then, the image and the corresponding pose labels are put into the improved Long Short-Term 
Memory based (LSTM-based) PoseNet network for training and the network is optimized by the 
Nadam optimizer. Finally, the trained network is used for image localization to obtain the 
camera pose. Experimental results on outdoor public datasets show our VNLSTM-PoseNet can 
lead to drastic improvements in relocalization performance compared to existing state-of-the- 
art CNN-based methods.
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1. Introduction

Image-based camera relocalization is a basic problem in 
many computer vision applications, such as autonomous 
vehicle driving, mobile robots, Augmented Reality (AR), 
pedestrian visual positioning, Structure from Motion 
(SfM) (Li et al. 2020b; Tateno et al. 2017; Asadi et al. 
2019; Liu et al. 2020; Acharya et al. 2019a; Niu et al. 
2019), and so on. It refers to estimating the camera’s 
pose, that is position, and orientation, according to the 
image. Traditional geometric-based image positioning is 
mainly realized by local feature matching. Its main idea is 
to extract local features from the image and establish 2D- 
3D matching with corresponding 3D points, and then 
determine the camera pose according to the matching 
relationship. Geometry-based visual positioning meth
ods rely on correct local feature matching, however, not 
enough accurate matching points can be found in all 
scenarios (Li et al. 2020a; Jin et al. 2021; Miao et al. 
2021). Various complex situations that may exist in the 
real environments, such as object occlusion, viewpoint 
changes, motion blur, illumination changes, and lack of 
texture, may affect feature matching and make it difficult 
to obtain accurate camera poses or successful 
positioning.

In recent years, deep learning, an important 
branch of machine learning, has been widely used 
in many computer vision fields, such as object 
recognition, image retrieval, image classification, 

and so on. (Li et al. 2020b; Husain and Bober 2019; 
Hu et al. 2018; Zhang, Li, and Du 2018; Singh et al. 
2020). In 2015, Kendall, Grimes, and Cipolla (2015) 
innovatively introduced Convolutional Neural 
Networks (CNN) into the field of image-based cam
era positioning and proposed PoseNet method. This 
method uses transfer learning from large-scale clas
sification data to directly obtain 6-DOF camera pose 
from a single image in an end-to-end manner. It 
significantly improves the robustness and efficiency 
of geometric positioning based on local features and 
positioning using bag of word vectors and random 
forests image retrieval technology in traditional 
machine learning. Although PoseNet overcomes 
many limitations of existing methods, especially 
reduces the dependence on rich textures, and 
improves the robustness and efficiency of localiza
tion, its localization accuracy is still far behind the 
geometric-based visual relocalization method when 
the local features perform well. Therefore, how to 
improve the accuracy of image positioning based on 
convolutional neural networks is still an important 
problem to be solved in many precise positioning 
applications.

Based on this, in order to further improve the 
accuracy and robustness of image positioning method 
based on convolution neural network, this paper pro
poses a high-precision image relocalization method 
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(VNLSTM-PoseNet) based on Long Short-Term 
Memory network (LSTM) (Shi et al. 2015). This 
method mainly improves PoseNet from the following 
three aspects. (1) By improving the clipping method of 
input image, the image can obtain a larger receptive 
field, thereby obtaining more characteristic informa
tion for image positioning. (2) Based on the Pytorch 
framework, the Nadam optimizer is used to optimize 
the network to obtain more suitable network para
meters. (3) The LSTM structure is introduced into 
the PoseNet network to perform structural dimen
sionality reduction on the Fully Connected (FC) 
layer and select the most useful relevant features for 
camera relocalization tasks. Experiments show that 
the method proposed in this paper has better accuracy 
and stronger robustness than PoseNet.

2. Relate work

At present, there are three main methods for image- 
based camera positioning, namely, image positioning 
method based on geometry, image positioning method 
based on deep learning, and image positioning 
method based on fusion of geometry and deep 
learning.

Geometry-based image positioning method is 
based on the known three-dimensional environment. 
It takes a set of photos of a certain scene and creates 
a three-dimensional model of the scene through the 
Structure from Motion (SfM) (Sattler, Leibe, and 
Kobbelt 2016; Han, Laga, and Bennamoun 2019) or 
Simultaneous Localization and Mapping (SLAM) 
(Mur-Artal, Montiel, and Tardos 2015; Mur-Artal 
and Tardos 2017). It matches the local 2D feature 
points extracted from the query image with the corre
sponding 3D feature points in the model to establish 
the corresponding relationship (e.g. SIFT (Lowe 
2004), SURF (Bay et al. 2008), ORB (Rublee et al. 
2011) algorithms), and solves the camera pose of six 
degrees of freedom through Perspective-n-Point 
(PnP) and other algorithms (e.g. EPnP, UPnP (Hesch 
and Roumeliotis 2011; Lepetit, Moreno-Noguer, and 
Fua 2009) algorithms). For the mismatched points in 
the matching process, the Random Sampling 
Consensus algorithm (RANSAC (Fischler and Bolles 
1981), Progressive Sampling Consensus (PROSAC) 
(Chum and Matas 2005)) is used to eliminate the 
mismatching points and accelerate the camera pose 
calculation (Qin et al. 2019). Among them, when 
performing 2D-3D matching, it is necessary to search 
for the 3D feature points corresponding to the 2D 
feature points in the 3D point cloud feature library. 
This process is usually implemented by the nearest 
neighbor search method. Common nearest neighbor 
search algorithms are KD tree (Silpa-Anan and 
Hartley 2008) and K-means (Nister and Stewenius 

2006). However, the cost of matching in a large and 
dense feature space is very large. In order to speed up 
this feature matching process, Sattler, Leibe, and 
Kobbelt (2011) used visual vocabulary for effective 
2D to 3D matching, and Sattler, Leibe, and Kobbelt 
(2016) proposed an active search mechanism based on 
feature-to-point and point-to-feature. Glocker et al. 
(2015) used the Bag of Words model (BoW) to find 
key frames with the same visual words as the current 
frame. This type of method can reduce the matching 
cost to a certain extent. However, because the match
ing cost increases exponentially with respect to the 
number of key points, this type of method is not 
suitable for complex large-scale 3D scenes. On the 
other hand, the accuracy of the camera pose in the 
geometry-based image positioning method directly 
depends on the accuracy of feature matching, and it 
is difficult to obtain accurate matching points in some 
complex scenes, which will seriously affect the accu
racy of the camera pose calculation. These are also the 
important factors that restrict the image positioning 
method based on geometry.

In recent years, with the development of deep 
learning, scholars have also begun to try to introduce 
deep learning into the field of image localization and 
have made a lot of progress (Brachmann et al. 2016; 
Melekhov et al. 2017; Behera et al. 2020; Shukla et al. 
2018; Prins and Van Niekerk 2021; Lock and Pettit 
2020; Kosowski et al. 2020). (Shotton et al. 2013) 
trained a random forest on RGB-D images and trans
formed the positioning problem into a problem of 
minimizing the energy function on the possible cam
era position assumptions. This method eliminates the 
need for traditional pipeline of feature extraction, fea
ture description, and feature matching. Valentin et al. 
(2015) used the uncertainty in the model to further 
improve this method. It starts from the unique point 
estimation, and then predicts its uncertainty thus 
achieving more reliable continuous pose optimization. 
However, these two methods require input of depth 
information during training, which is detrimental to 
the adaptability and generalization of the model. In 
2015, PoseNet proposed by Kendall et al. was the first 
attempt to apply CNN to the task of camera pose 
regression. This method modifies the GoogleNet 
(Szegedy et al. 2015) architecture and uses the transfer 
learning in the ImageNet (Deng et al. 2009) classifica
tion task to regress the 6-DOF camera pose from RGB 
images in an end-to-end manner. However, the accu
racy of this method is still far behind the traditional 
geometry-based positioning methods. Therefore, 
many scholars have devoted themselves to modifying 
the PoseNet method to improve its accuracy and have 
proposed many algorithms. Kendall and Cipolla 
(2016) used Bayesian CNN to estimate the uncertainty 
of positioning, thus improving the positioning 
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accuracy of the system. Kendall and Cipolla (2017) 
proposed a loss function based on geometry and 
reprojection errors aiming to solve the problems of 
hyperparameter training caused by the use of L2 dis
tance in the PoseNet loss function. Valada, Radwan, 
and Burgard (2018) combined the geometric knowl
edge and semantic knowledge of the world to locate 
and proposed a novel geometric consistency loss func
tion. These two methods improve the simple loss 
function of PoseNet and add other constraints to 
improve the positioning accuracy. Wu, Ma, and Hu 
(2017) proposed to use Euler angle variant to repre
sent orientation, and designed BranchNet multi-task 
CNN to deal with the complex coupling of position 
and direction. It solves the problem that the weighting 
factor between the position error and the orientation 
error in the loss function is not robust to different 
scenarios caused by PoseNet learning position and 
orientation at the same time. Khoshelham and 
Winter (2019) and Acharya et al. (2019b) proposed 
to obtain a 3D indoor model from the existing 
Building Information Model (BIM) to generate syn
thetic images of known camera poses, and then fine- 
tune the Bayesian convolutional neural network to 
perform camera positioning. This is a new attempt to 
locate by synthetic images, but the accuracy of the 
method is not high. Nguyen et al. (2017) proposed 
an SP-LSTM framework based on CNN and LSTM. 
CNN and LSTM were used to learn the depth features 
and spatial dependence of images, respectively. It uses 
time information to enhance camera pose estimation. 
Ming, Chunhua, and Reid (2018) established a hybrid 
model of two main machine learning frameworks, 
CNN, and Gaussian Process Regression (GPR), and 
designed a unified objective function (minimizing KL 
divergence function) to drive the model to be trained 
in an end-to-end manner. The introduction of prob
ability model is conducive to further improving the 
positioning accuracy.

Image positioning method based on fusion of geo
metry and deep learning is to combine geometry 
methods and deep learning methods to estimate the 
camera pose. Deep learning part is used to learn and 
predict the 3D position of a pixel in world coordinates 
while geometry part infers the camera pose from these 
correspondences. Guzman-Rivera, Kohli, and Glocker 
et al. (2014) tried to use hybrid methods for image 
localization, but their main limitation was that they 
require the use of RGB-D images for training and 
testing. Cavallari et al. (2017) optimized this limitation 
and proposed to use only automatic context random 
forest from RGB images for positioning. L. Meng et al. 
(2016) performed RGB image localization by using 
regression forest to estimate the initial camera pose, 
then queried the nearest neighbor key frame image, 
and optimized the initial pose by sparse feature 

matching between the camera input image and the 
nearest key frame. Brachmann et al. (2017) used 
VGG style architecture to predict scene coordinates 
and proposed a distinguishable RANSAC, so that it 
could learn a matching function, which optimizes pose 
quality. Although these methods improve positioning 
accuracy, they require thousands of predictions about 
scene coordinates, which cause RANSAC to spend 
more and more time to estimate the best camera pose.

In order to further optimize the positioning accu
racy and robustness of PoseNet in challenging scenar
ios, this paper proposes a novel visual positioning 
method: VNLSTM-PoseNet. Aiming at the problem 
of image information loss caused by cropping the 
image, which is resized according to the aspect ratio 
used by the traditional PoseNet, this paper intends to 
directly resize the input image to obtain a larger recep
tive field, and trains the proposed deep learning net
work based on LSTM. In addition, this method uses 
the Nadam optimizer to optimize the deep learning 
network. Experimental results show that the method 
proposed in this paper is significantly better than 
PoseNet method in terms of both position accuracy 
and orientation accuracy.

3. Methodology

The experimental images used in this paper are auto
matically generated sample labels (i.e. camera pose) by 
SfM in advance. During image preprocessing, in order 
to obtain the image of fixed size, this paper proposes to 
directly resize the training image to the corresponding 
size without cropping. Then, the images and corre
sponding labels are trained in the high-precision posi
tioning network based on LSTM units. On the basis of 
PoseNet network structure, the network introduces 
LSTM to perform structural dimensionality reduction 
on the full connection layer and select the most useful 
features for camera pose estimation task. In addition, 
this paper adopts the Nadam optimizer to optimize 
the network to train the most suitable parameters. 
Figure 1 is the architecture of the proposed pose 
regression ConvNet.

3.1. PoseNet image positioning network

a. Training image resize. PoseNet is based on 
GoogleNet network. Its biggest innovation is to pro
pose transfer learning, which uses a classifier and 
a small amount of training samples to obtain 
a regression for positioning. In this way, the problem 
of insufficient training samples can be effectively 
solved. However, one disadvantage of using transfer 
learning and pre-trained networks is that it has strict 
limitations on the network structure. Specifically, the 
size of the RGB image input to the network must be 
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224×224 pixels specified by GoogleNet (Seifi and 
Tuytelaars 2019). However, the actual RGB image 
participating in the training may not be the specified 
size. To solve this problem, PoseNet’s processing 
method is to resize the minimum side size of the 
image to 256 pixels according to the aspect ratio of 
the original image, and then crop the 224×224 window 
in the middle of the scaled image as the training image. 
As shown in Figure 2, Figure 2(a) is the original image, 
Figure 2(b) is the image whose height is resized to 256 
pixels according to the aspect ratio, and Figure 2(c) is 
the image after cropping 224×224 pixels in the center 
of Figure 2(b). One disadvantage of this process is that 
the image information outside the cropping window 
will be lost and cannot be added to the network for 
training. However, the missing part may also contain 
key information to assist positioning, which may affect 
the accuracy of positioning.

b. Network structure. GoogleNet (Szegedy et al. 
2015) is a new deep learning framework proposed by 
Christian Szegedy in 2014. It is originally designed for 
object classification and detection. GoogleNet innova
tively uses the Inception module to make the existing 

dense components close to and cover the best local 
sparse structure in the convolutional visual network. 
GoogleNet neural network has 22 layers. It uses 
a 224×224 pixels image as input, uses a Rectified 
Linear unit (ReLu) as an activation function, and 
propagates it through nine stacked Inception modules. 
Each layer in the network learns a further abstraction 
of the input data. The highest level of abstraction 
(located in the last layer of the network) is fed to the 
fully connected layer and the softmax layer along with 
the two intermediate abstractions to predict the class 
of the object. The network structure of GoogleNet is 
shown in Figure 3.

Based on GoogleNet, PoseNet changes the three 
softmax classifiers to three regressors. The softmax 
layer is removed, and the output of the final fully 
connected layer is the camera pose vector. In addition, 
it inserts another fully connected layer whose feature 
size is 2048-demensional before the final regression, 
which constitutes a positioning feature vector and can 
be used to achieve feature generalization. The network 
structure of PoseNet is shown in Figure 4. The blue 
part represents the pre-training module inherited 

Figure 1. Architecture of the proposed pose regression ConvNet.

Figure 2. The example of PoseNet image preprocessing. (a) Original image (b) Image after resizing (c) Image after cropping.
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from GoogleNet while the green part represents the 
improved PoseNet module.

c. Network optimizer. PoseNet uses Stochastic 
Gradient Descent algorithm (SGD) (Zinkevich et al. 
2011) to optimize the network. SGD is a very common 
optimization algorithm in neural network model 
training, which is based on the gradient descent algo
rithm. The basic idea of the gradient descent algorithm 
is to obtain the partial derivative of each hyperpara
meter, and then the current gradient can be obtained. 
The hyperparameter is updated in the opposite direc
tion of the gradient. Through iteratively updating the 
loss function in this way, the global optimal solution of 
the hyperparameter can be obtained and the loss func
tion can be minimized. However, each step of the 
gradient descent algorithm needs to calculate the gra
dient of all hyperparameters so the iteration speed is 
bound to be very slow, which brings challenges to 
solving large-scale data optimization problems. In 
order to quickly achieve gradient descent, the stochas
tic gradient descent algorithm proposes to randomly 
use a sample to represent all samples for gradient 
descent during each update, and then adjust the 
hyperparameters. The SGD gradient is shown in 
Equation (1), where α is the learning rate and gt is 
the gradient of the current batch. 

ηt ¼ α � gt (1) 

There are two problems with the SGD algorithm. The 
first is that it is difficult to choose an appropriate 
learning rate, so SGD uses the same learning rate for 
all parameters. But in practical applications, for sparse 

data or features, we may want to update faster, and for 
features that do not appear frequently, we hope that it 
can be updated slower to reduce training costs. The 
SGD algorithm cannot satisfy this point. Second, 
because SGD updates frequently, it may cause severe 
oscillations. In addition, because the SGD algorithm 
uses the gradient descent of a random sample as the 
average gradient descent of the overall sample, this 
also makes it easy for SGD to converge to the local 
optimum, and in some cases may be trapped in the 
saddle point. This limits the optimization perfor
mance of SGD for convolutional neural networks 
thus affecting the positioning accuracy.

3.2. VNLSTM-PoseNet image positioning network

a. Image processing for larger receptive fields. In order 
to solve the problem of image information loss in 
PoseNet, this paper proposes to use the entire field of 
view of the image, that is, only need to resize the input 
image to 224×224 pixels, as shown in Figure 5. 
Figure 6 shows the difference in the receptive field of 
the input image of PoseNet and the network of this 
paper. There is significant key information in the red 
box area in the Figure 6(b), but the PoseNet network 
discards this information. The direct resizing method 
proposed in this paper will lead to different aspect 
ratios, but considering that the changes of aspect 
ratio are consistent with all images in the dataset, we 
think that the loss of the original aspect ratio will not 
have a great impact on the network performance. On 
the other hand, this resize method would reduce the 

Figure 3. The structure of GoogleNet.

Figure 4. The structure of PoseNet.
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resolution of the image, but compared to the image 
resolution, the receptive field is more important, 
because the pooling layer in the network can smooth 
the high-frequency details of the high-resolution 
image. Therefore, a higher positioning accuracy can 
be obtained by adopting a direct resize method. Our 
experimental results also proved the hypothesis.

b. LSTM-based network structure. GoogleNet uses 
an average pooling layer after the convolutional layer 
to collect the information of each feature channel in 
the entire image. PoseNet uses a fully connected layer 
after average pooling layer to learn the correlation 
between features. But the regression pose is not opti
mal after the high-dimensional output of the fully 
connected layer. By the way, in order to overcome 
the gradient vanishing problem and have faster train
ing speed, the Relu activation function is chose. 
Specifically, compared with the amount of available 
training data, the dimension of the 2048-dimensional 
image through the fully connected layer is usually 
relatively large. Therefore, the linear pose regressor 
has multiple degrees of freedom, and overfitting is 
likely to cause inaccurate prediction of the test 

image. We can directly reduce the dimensionality of 
fully connected layer, but studies have shown that it is 
more effective to use LSTM memory block networks 
for dimensionality reduction (Walch et al. 2017). 
Compared with PoseNet applying dropout to avoid 
overfitting, the method in this paper estimates more 
accurate position, which proves the rationality of our 
use of LSTMs. In the network of this paper, we output 
the 2048-dimensional feature vector as a sequence and 
insert four LSTM units after the fully connected layer. 
They serve as dimensionality reduction of feature vec
tors in a structured manner, and recognize the most 
useful feature correlations to complete the pose esti
mation task. In fact, directly inputting the 2048- 
dimensional vector into the LSTM does not work 
well for the reason that even though the storage unit 
of the LSTM can remember the features in the dis
tance, the 2048 length vector is too long for the LSTM. 
To solve this problem, we resize the vector to a 32×64 
matrix and apply four LSTMs in four directions: up, 
down, left, and right. Then connect these four LSTMs 
and put them into the fully connected pose prediction 
layer, which serves as structured dimensionality 

Figure 5. Effect of improved image preprocessing. (a) Original image (b) Image after preprocessing.

Figure 6. Comparison figure of the field of view of PoseNet and our method. (a) PoseNet (b) VNLSTM-PoseNet.
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reduction and greatly improves the accuracy of pose 
prediction. The network structure is shown in 
Figure 7, where the blue part represents the module 
inherited from PoseNet and the yellow part represents 
the improved module of this paper.

c. Improved network optimizer. Nadam method is 
a method to obtain better performance by calculating 
the adaptive learning rate of each hyperparameter. It 
combines the idea of Nesterov Accelerated Gradient 
(NAG) on the basis of Adam (Dozat 2016).

Adam method adds first-order momentum 
and second-order momentum on the basis of SGD. 
The first-order momentum is shown in Equation (2), 
where β1 is a hyperparameter, often taking an empiri
cal value of 0.9 and gt is the gradient of objective 
function with respect to the parameters. The first- 
order momentum is the average value of the exponen
tial movement of the gradient direction at each time, 
which is approximately equal to the average value of 
the sum of the gradient vectors at the latest 1 ⁄ ((1-β1)) 
time. 

mt ¼ β1 �mt� 1 þ ð1 � β1Þ � gt (2) 

In other words, the descending direction at time t is 
not only determined by the gradient direction of the 
current point, but also by the descending direction 
accumulated before. This means that the descending 
direction is mainly the descending direction accumu
lated before, and is slightly biased to the descending 
direction at the current moment, thereby avoiding 
training problems caused by the extreme current 
gradient.

The second-order momentum solves the problem 
of learning rate, and the historical update frequency is 
measured by the second-order momentum-the sum of 
the squares of all gradient values so far in this dimen
sion. The second-order momentum is shown in 
Equation (3), where β2 is a hyperparameter. 

Vt ¼ β2 � Vt� 1 þ ð1 � β2Þg
2
t (3) 

For parameters that are updated frequently, we have 
accumulated a lot of knowledge about them. We do 
not want to be affected too much by a single sample. 
We hope that the learning rate will be slower. For 
parameters that are updated occasionally, we know 

too little information. We hope to learn more from 
every occasional sample, that is, the learning rate is 
higher. This can be achieved through second-order 
momentum.

Considering that mt and vt are biased to the initial 
value at the initial stage of the iteration, bias correction 
can be made to the first-order momentum 
and second-order momentum, as shown in 
Equations (4) and (5). 

m̂t ¼
mt

1 � βt
1

(4) 

v̂t ¼
vt

1 � βt
2

(5) 

Finally, the updating rule of Adam algorithm after 
introducing first-order momentum and second-order 
momentum is shown in Equation (6). 

θtþ1 ¼ θt �
η
ffiffiffiffi
v̂t
p
þ ε

m̂t (6) 

Among them, θt is the model parameter at the current 
moment, θt+1 is the model parameter at the next 
moment to be predicted, ε is the smoothing term to 
prevent the denominator from being zero, and η is the 
learning rate.

The gradient direction in Adam method is deter
mined by the accumulated momentum and the cur
rent gradient. But the core idea of NAG is to consider 
the influence of the future position on the current 
gradient when calculating the gradient. That is, in 
order to make the descent process more intelligent, 
the algorithm must be able to slow down the update 
rate before the objective function has a tendency to 
increase. The result is to prevent the algorithm from 
being too fast, thus increasing responsiveness, and 
effectively solving the problem of SGD easily falling 
into local optimality.

It uses the momentum of the future moment when 
calculating the model parameters θt in the previous 
iteration, namely, 

θt ¼ θt� 1 � mt (7) 

Finally, the parameter update rule of Nadam is shown 
in Equation (8). 

Figure 7. Our image positioning deep ConvNet.
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θtþ1 ¼ θt �
η
ffiffiffiffi
v̂t
p
þ ε
ðβ1m̂t� 1 þ

ð1 � β1Þgt

1 � βt
1
Þ (8) 

Obtaining the learning rate of each hyperparameter in 
an adaptive manner through the above improvements 
can effectively solve the problem of low training accu
racy and high cost caused by the consistent learning 
rate of all hyperparameters of SGD and the problem of 
easily falling into local optimum.

4. Experiments and analysis

4.1. Experimental data and computing 
environment

In order to verify the effectiveness of VNLSTM- 
PoseNet method proposed in this paper, we use the 
method to conduct experiments and compares the 
experimental results with that of PoseNet open- 
source code. This paper uses Pytorch to program the 
proposed new methods. In the experiment, the pro
cessor used is Intel(R) Core(TM) i7-8750 H, the mem
ory is 8GB, and the GPU we use is GeForce GTX 1060, 
and the network is fine-tuned with a batch size of 75. 
Set the initial learning rate of 500 epochs to 0.0005, 
and the learning rate adjustment strategy to lamda. 
For the network structure, the hidden size of LSTM 
layer is 256. For the Nadam optimization algorithm, 
set β1 = 0.9 and β2 = 0.999. The image data used in this 
paper comes from Cambridge Landscape dataset. The 
two sets of data used are Kings College and Old 
Hospital. The Kings College dataset has a shooting 
area of 5600 m2, with a total of 1220 training images 
and 343 test images. The Old Hospital dataset has 

a shooting area of 2000 m2, with a total of 895 training 
images and 182 test images, respectively. The sample 
images of the datasets are shown in Figure 8. Figure 8 
(a and b) are selected from the Kings College dataset 
while Figure 8(c and d) are selected from the Old 
Hospital dataset.

4.2. Experimental results and analysis

To compare these methods, we present results for 
urban streets image-based localization on the two 
publicly available Cambridge landmarks datasets in 
Table 1. Figure 9 shows the training loss of each 
epoch during the network training process. The figure 
on the left shows the change of position error with 
epoch, and the figure on the right shows the change of 
orientation error with epoch. It can be seen from the 
Figure 9 that although the training loss fluctuates in 
a small range during the training process, the overall 
trend is to steadily decrease and reach a relatively 
stable value around 500 epochs, so we set the final 
training epoch to 500. The five different colors repre
sent PoseNet and the four improved methods pro
posed in this paper: Bv-PoseNet, LSTM-PoseNet, 
Nadam-PoseNet and VNLSTM-PoseNet. It can be 
seen that the improved method proposed in this 
paper has reduced loss compared with the original 
PoseNet. Especially, the training loss of VNLSTM- 
PoseNet is greatly reduced compared with PoseNet, 
it is also the final method proposed in this paper. The 
other three methods are single improvements in 
method of VNLSTM-PoseNet, their experiments 
were used to verify the effectiveness of each individual 
improvement. When the network is stable, the 

Figure 8. Sample images of datasets. (a) Church with plenty of light (b) Church with less light (c) Big view of the building (d) Close- 
up view of building.
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position error and orientation error are reduced by 
about 15 m and 2 degrees, respectively.

In order to compare the five methods fairly, we 
provide the average position accuracy and average 
orientation accuracy results of the five methods for 
positioning the two datasets, as shown in Table 1. The 
average position and orientation accuracy of the ori
ginal PoseNet is about 2.5 m and 6 degrees respec
tively. The average accuracy of the VNLSTM-PoseNet 
method proposed in this paper is significantly higher 
than that of PoseNet. The position accuracy and orien
tation accuracy are improved by about 1.2 m and 1.5 
degrees while the error is reduced by about 48% 
and 24%.

Figure 10 is the scatter plot of the position and 
orientation errors after using five methods to locate 

the query images. The horizontal axis is the position 
error in meters, and the vertical axis is the orientation 
error with the unit of degree. Figure 10(a) is the result 
of PoseNet, Figure 10(b) is the result of Bv-PoseNet 
with improved image preprocessing method, 
Figure 10(c) is the result of LSTM-PoseNet with 
improved LSTM-based network structure, Figure 10 
(d) is the result of Nadam-PoseNet using the Nadam 
optimizer, and Figure 10(e) is the result of the finally 
positioning method VNLSTM-PoseNet proposed in 
this paper.

It can be seen from the Figure 10 that the error 
point of the improved method in this paper is closer to 
the origin point, that is, the position error and the 
orientation error are smaller, which shows that the 
method in this paper has significantly improved the 

Table 1. Localization results of several methods.
PoseNet Bv-PoseNet LSTM-PoseNet Nadam-PoseNet VNLSTM-PoseNet

Kings College Position(m) 2.86 2.83 2.42 1.91 1.71
Orientation(°) 6.24 6.14 6.11 5.03 4.77

Old Hospital Position(m) 2.20 2.12 1.85 1.00 0.89
Orientation(°) 5.05 4.94 4.71 4.47 3.83

Figure 9. Training loss over different epochs. (a) Position error of different epoch (b) Orientation error of different epoch.

Figure 10. Error scatter plot of query image localization. (a) PoseNet (b) Bv-PoseNet (c) LSTM-PoseNet (d) Nadam-PoseNet (e) Our 
method.

430 M. LI ET AL.



accuracy and robustness of the PoseNet method. 
Especially for the images difficult to position, 
PoseNet method has many images with large position
ing errors. These position errors and orientation 
errors can reach about 20–30 m and 20–30 degrees, 
respectively, and the number of such images is large. 
The position errors of images positioned by Bv- 
PoseNet method is less than 25 m. The position errors 
of LSTM-PoseNet are greatly improved compared 
with PoseNet as well. The position errors of most 
images are within 10 m and the orientation errors 
are within 20 degrees. Nadam-PoseNet has only 
a few images whose position errors are between 15 m 
to 20 m but the orientation errors are within 18 
degrees. For VNLSTM-PoseNet, the maximum posi
tion errors and orientation errors are only slightly 
larger than 15 m and 15 degrees while the number of 
such images is very small, and the position accuracy 
and orientation accuracy are greatly improved com
pared with PoseNet.

Figure 11 is the cumulative error histogram of the 
Kings College test dataset showing the positioning 
performance of the five methods from a more quanti
tative and intuitive perspective. Figure 11(a) shows the 
position error, and Figure 11(b) shows the orientation 
error. Generally speaking, compared with PoseNet 
algorithm, the method proposed in this paper is 
more competitive. From the perspective of position 
error, PoseNet has about 9% of images whose position 
errors are within 1 m, Bv-PoseNet and LSTM-PoseNet 
have about 12%, Nadam-PoseNet has about 14%, and 
VNLSTM-PoseNet has reached 30%. For images with 
position errors within 2 m, the percentages of the five 
methods are 42%, 54%, 60%, 52%, and 72%, respec
tively. Bv-PoseNet, LSTM-PoseNet, Nadam-PoseNet 
have 12%, 18%, and 10% more images with position 
errors within 2 m than PoseNet, and the 

corresponding percentage of the high-precision posi
tioning network VNLSTM-PoseNet proposed in this 
paper is 30%. Similarly, when the position error is 5 m, 
the corresponding percentages are 91%, 94%, 97%, 
94%, 98%. It can be obtained that the position accu
racy of the method proposed in this paper is greatly 
improved compared with PoseNet. For images that are 
difficult to locate (position error greater than 10 m), 
the method in this paper also has a better positioning 
effect. The percentages of the five methods for this 
type of images are 97%, 98%, 98%, 98%, and 99%. 
For the orientation error, the percentages of the orien
tation errors within 5 degrees of the five methods are 
47%, 51%, 64%, 47%, and 73%, respectively. The per
centage of VNLSTM-PoseNet’s orientation error 
within 5 degrees is 26% higher than that of PoseNet, 
that is, the orientation accuracy is significantly 
improved. When the orientation error is 15 degrees, 
the percentages corresponding to the five methods are 
96%, 97%, 97%, 96%, 100%, that is, the orientation 
errors of all images of VNLSTM-PoseNet are within 
15 degrees, but at this time in the PoseNet method, 
there are still many images whose orientation errors 
are greater than 15 degrees.

Figure 12 shows the positional relationship between 
the estimated camera pose and the real camera pose. 
The red line is the real trajectory of the image 
sequence, and the blue point represents the camera 
pose of each frame calculated by the two experimental 
deep ConvNets in this paper. Use a black line to 
connect the estimated position with the real position 
of corresponding image and the length of the black 
line represents the difference between the calculated 
position and the real position. Figure 12(a) is the result 
of PoseNet, and Figure 12(b) is the result of VNLSTM- 
PoseNet. On the whole, the black line of the 
VNLSTM-PoseNet method is shorter than that of 

Figure 11. Cumulative histogram of localization error. (a) Position error (b) Orientation error.
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PoseNet, that is, the positioning accuracy of the 
method in this paper is significantly improved com
pared with PoseNet. In particular, in the area of the 
abscissa from 0 to 5 m, that is, the front door area in 
the dataset Kings College, there are many vehicle 
occlusions, which affect the image positioning, result
ing in uneven distribution of estimated positions; thus, 
clusters are formed near the part of the trajectory, 
which indicates that there is a positional deviation. 
But the VNLSTM-PoseNet method proposed in this 
paper improves the problem of position distribution. 
The black line is shorter, that is, the estimated camera 
pose is closer to the real camera pose. These differ
ences are more easily observed in the visualization 
results in Figure 12.

Figure 13 is a visualization map of the errors of each 
part of the predicted trajectory, the color represents 
the magnitude of the errors. It shows the positioning 
accuracy of different areas more intuitively. The tra
jectory is the true ground trajectory calculated by SfM 
method. The difference between the trajectory calcu
lated by different networks and the real trajectory is 

drawn from dark blue to yellow, where the color 
provides a measure of error. Among them, Figure 13 
(a) is the result of PoseNet, and Figure 13(b) is the 
result of VNLSTM-PoseNet. Overall, every part of 
VNLSTM-PoseNet trajectory shows more blue and 
green color than PoseNet, that is, higher accuracy, 
while PoseNet has more yellow trajectories, that is, 
the errors of these parts are large. From the perspective 
of trajectory, the overall position error is relatively 
large in the range of x-coordinates 0 to 5 m and 10 
to 15 m. This is due to the positioning difficulties 
caused by the presence of vehicles and vegetation in 
this part. However, the method in this paper reduces 
the influence of these occlusions on the positioning to 
a certain extent, which shows that they have higher 
accuracy in these parts.

5. Discussion

According to the above experimental results, the posi
tioning accuracy of the four improved methods pro
posed in this paper are all higher than that of PoseNet. 

Figure 12. Comparison of real pose and calculated pose. (a) PoseNet (b) VNLSTM-PoseNet.

Figure 13. Visualizing error for the different parts of the trajectory. (a) PoseNet (b) VNLSTM-PoseNet.
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Among them, Bv-PoseNet can obtain more image 
feature information by increasing the receptive field 
of the image, thereby improving the success rate and 
accuracy of image positioning. For LSTM-PoseNet, by 
introducing the LSTM structure to perform structural 
dimensionality reduction on the fully connected layer, 
the most useful feature correlation can be selected for 
pose estimation, and the Nadam optimizer in Nadam- 
PoseNet is conducive to selecting more suitable net
work hyperparameters to improve the accuracy of 
image positioning. The VNLSTM-PoseNet, which 
integrates the three methods, has a significant 
improvement in image positioning accuracy com
pared to PoseNet. In addition, VNLSTM-PoseNet 
method proposed in this paper has fewer images that 
are difficult to locate, that is, the images whose position 
accuracy and orientation accuracy are significantly 
greater than other images. Judging from the actual 
scene, these difficult-to-locate images are mostly 
images with sudden changes in the shooting direction, 

images blocked by weakly textured objects or images 
with dark light. For images with sudden shooting 
direction changes, as shown in Figure 14(a and b), 
this is because in actual shooting, when the track 
direction suddenly changes, the image definition is 
poor due to motion blur, and the corresponding 
image quality is poor, which affects the positioning 
accuracy. However, our VNLSTM-PoseNet network 
reduces the impact of motion blur on the positioning 
results to a certain extent. The specific performance is 
that the images difficult to position are less than 
PoseNet and the accuracy is relatively higher. At the 
same time, there are some vegetation or vehicle occlu
sions in the dataset. Due to the weak texture of vegeta
tion and vehicles or repetitive texture structure in the 
entire space, it is easy to cause ambiguity when these 
features are used as positioning features and cause 
positioning failure, as shown in Figure 14(c–f). The 
texture of the occluder is weak and repetitive, which is 
a challenge for image positioning. In this case, PoseNet 

Figure 14. Example of query images difficulty to position. (a) Sudden direction movement and blur 1 (b) Sudden direction 
movement and blur 2 (c) Object occlusion 1 (d) Object occlusion 2 (e) Object occlusion 3 (f) Object occlusion 4 (g) Dark light 1 (h) 
Dark light 2.
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cannot calculate the accurate pose. However, the 
method proposed in this paper can more effectively 
use high-level features such as contours for positioning 
to compensate for the impact of texture loss on the 
positioning results, it can better calculate camera pose. 
Especially after improving the image preprocessing 
method, as the receptive field becomes larger, more 
image feature information can be obtained, so the 
calculated pose is more accurate. In addition, the 
weak texture caused by the dark light also brings 
challenges to the positioning, as shown in Figure 14 
(g and h). Based on the above analysis, the VNLSTM- 
PoseNet method proposed in this paper has better 
robustness to situations, such as the motion blur, the 
weak texture, the illumination variation, and the 
occlusions. It can effectively use high-dimensional fea
tures for image positioning, and can better adapt to 
challenging situations in real environments.

On the other hand, from the perspective of running 
time, it takes about 52 ms to locate an image using 
PoseNet with the environment of this paper, and it 
takes about 58 ms to locate an image using VNLSTM- 
PoseNet method with the same environment, which 
far meets the real-time requirements.

6. Conclusions

In this paper, we presented a new deep ConvNet 
learning architecture that address the big challenge 
of image-based camera relocalization in urban streets 
from only RGB images. Rather than precomputing 
local feature points and building a 3D photo-realistic 
map as done in traditional matching-based relocaliza
tion techniques. In our proposed VNLSTM-PoseNet 
method, firstly, the training images can obtain a larger 
receptive filed by adopting a new clipping method, 
which can get more key image information to enhance 
positioning. Then, in order to obtain more suitable 
deep ConvNet hyperparameters, the Nadam optimizer 
is used to optimize the network based on the Pytorch 
framework. At last, the LSTM structure is introduced 
into the PoseNet network to perform structural 
dimensionality reduction on the fully connected 
layer and select the most useful relevant features for 
real-time camera pose regression. With a systematic 
evaluation on the two existing outdoor datasets 
through experiments, we show that VNLSTM- 
PoseNet can lead to drastic improvements in position
ing performance compared to other PoseNet-based 
methods, and achieving a localization accuracy of 
approximately less than 0.9 m in the dataset of Old 
Hospital. To our knowledge and analysis, the localiza
tion errors are mainly caused by the motion blur, the 
texture-less, the illumination variation, and the occlu
sions. We demonstrate that our approach succeeds in 
these challenging scenarios where the other CNN- 
based methods perform less well.

To this end, that is no doubt that exploring 
CNN-based camera relocalization in hard scenarios 
is a promising research direction. Besides aiming to 
close the gap in accuracy between local feature 
matching-based image localization, it has a vast 
advantage with robustness and efficiency. Of 
course, the localization errors definitely can be 
affected by those challenging scenarios. 
Alternatively, the errors could be an effect of the 
features learnt by the deep ConvNet for localiza
tion. In future work, we will conduct more in- 
depth research and exploration on the correlation 
of these problems, and introduce more constraints 
and information to improve the accuracy of camera 
pose regression based on convolutional neural 
network.
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