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ABSTRACT 
 

In this paper, the bifurcation method of planar systems and simulation method of differential 
equations are employed to investigate the bounded traveling wave solutions of the osmosis 

 3, 2K  equation. Our results show that this equation admits a variety of physical solutions such 

as compacton, peakon and smooth solitary wave solutions. 
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1. INTRODUCTION 
 
In recent years, many nonlinear partial 
differential equations (NLPDEs) have been 
derived from physics, mechanics, engineering, 
biology, chemistry and other fields. Since exact 
solutions can help people know deeply the 
described process and possible applications, 
seeking exact solutions is of great importance for 
NLPDEs. 
 
In [1], the authors investigated the role of 
nonlinear dispersion in the formation of patterns 
in liquid drops by introducing and studying a 
special type of KdV equation, of the form 
                

    0, 1,1 3,m n
t x xxx
u u u m n         (1.1) 

   

Which are now named the ),( nmK . They 

introduced a class of solitary waves with compact 
support, which they called compactons, that 
collide elastically and vanish identically outside a 
finite core region. Many powerful methods were 
applied to seek the exact or numerical solutions 
of Eq. (1.1), such as finite element method [2], 
finite difference method [3], Adomain method [4], 
homotopy perturbation method [5], Exp-function 
method [6], variational iteration method [7], 

bifurcation method [8] and 
'G G method [9]. 

 

In [10], the authors presented the application of 
Adomian decomposition method to the nonlinear 

osmosis  ,K m n  equations: 

                 

    0, , 1.m n
t x xxx
u u u m n          (1.2)  

               
They chose two special cases,  2, 2K  and 

 3, 3K  equations to illustrate the scheme such 

that new exact solutions with solitary patterns are 
of important significance and developed the new 
exact solutions which are generated by 
combining two distinct solutions of the  2, 2K  

and  3,3K  equations. At last, they established 

the general formulas for exact solutions of 

equations  ,K m n  whenm n being even and 

odd integers for 1n  . The peakon, soliton, and 
other new types of traveling wave solutions to the 

osmosis  2,2K  equation was obtained in [15, 

16,17]. 
 

The purpose of this paper is intend to investigate 
the bounded traveling-wave solutions to the 

Osmosis  3,2K equation 

 

   3 2 0.t x xxx
u u u                                (1.3) 

 
We’ll apply the bifurcation method of planar 
systems to obtained the compacton, peakon and 
solitary wave solutions. Note that this equation 
was not discussed in [10,11,12,13]. To the best 
of our knowledge, the traveling wave solutions to 
this equation have not been obtained yet. In [8] 
the authors obtain the peakons and smooth 

periodic wave solutions for the original  3,2K

equation 
 

   3 2 0.t x xxx
u u u                            (1.4) 

 
In comparison, our work in this paper not only 
obtain the peakon solution, but also obtain the 

compacton solution to the osmosis  3, 2K

equation. In addition, we derive the existence 
and properties of solitary wave solutions, and 
make the numerical simulations of the solitary 
wave and compacton by Maple, which can verify 
the correction of our theoretical analysis. Note 
also that in [14], the authors investigate the 

traveling-wave solutions of the BBM-like  3,2B

equation 
 

   3 2 0.t x x xxt
u u u u                   (1.5)                     

 
They obtained the elliptic periodic blow-up 
solutions trigonometric periodic blow-up solutions, 
symmetric elliptic periodic wave solutions, 
hyperbolic smooth solitary wave solution, 
hyperbolic blow-up solutions, hyperbolic peakon 
wave solution and hyperbolic periodic peakon 
wave solutions. One can see that, under the 

traveling-wave transformation )( ctxu    

)( , the obtained traveling-wave system are 

similar. However, there have some differences 
between ours and theirs. Firstly, the osmosis

 3, 2K equation we studied is of different 

physical background from the  3,2B  equation. 

Our results show that the osmosis  3, 2K  

equation has ‘dark’ solitary wave, compacton, 
and peakon, while the work in [14] shows that the 
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 3, 2B  equation has ‘bright’ solitary wave and 

peakon. Secondly, we obtain a compacton 
solution (such solution is a typical solitary-wave 

solution for the well-known  ,K m n equation, 

see [1]) for the osmosis  3, 2K  equation, while 

they didn’t give this solution to the  3,2B  

equation. Thirdly, we make the numerical 
simulations of the solitary wave solution and 
compacton solution, which verify the correction of 
our theoretical analysis, while they didn’t. 
 

The remainder of the paper is organized as 
follows. In Section 2, based on an independent 
variable transformation [8], we investigate the

 3, 2K equation by the bifurcation method of 

planar systems. In Section 3, applying the 
qualitative theory of polynomial differential 
system we obtain the existence and properties of 
solitary wave solutions theoretically. Numerical 
simulation of the solitary wave solution is made 
by Maple. In Section 4, in certain region of the 
parametric space, exact compacton solution is 
obtained and numerical simulation of such 
solution is also made by Maple. In Section 5, 
expression of exact peakon in certain parametric 
region is derived. A short conclusion is given in 
Section 6. 
 

2. BIFURCATION AND PHASE 
PORTRAITS OF TRAVELING WAVE 
SYSTEM  

 

Let  u     with x ct   be the 

solution of Eq. (1.3), then it follows that 
                     

     
' '''3 2' 0,c u u                (2.1)    

              
Where c represents the wave speed and 
interprets physically the level of the undisturbed 
wave surface at infinity. 
 
Integrating (2.1) once we have 

               

     
23 2 2 ' '' 33 3 2 2 ,c g               

     (2.2)       
 

Where g is a constant of integration. 
 

Taking
3g  in (2.2) we rewrite it as the 

planar autonomous system 

            

 
 

3 2 2 23 3 2

2

d
y

d

c ydy

d





   

  







    
 

      , (2.3)   

             
Note that (2.3) has a singular line    .To 

avoid the line temporarily we make 

transformation  d d     . Under this 

transformation, Eq. (2.3) becomes 
                      

 

 3 2 2 2

2 ,

3 3 2 ,

d
y

d

dy
c y

d


 



   



 


     


   (2.4)            

    
Which possesses a Hamiltonian 

              

�(�, �) =  �� �
�

�
�� +  ��� +  

�

�
(6�� −  �)� +

 
�

�
(3�� −  �)� − (� + �)� �� = ℎ,   (2.5) 

 

Where h  is a constant. System (2.4) has the 
same topological phase portraits as system (2.3) 
except for the straight line    .Obviously, 

   is a constant solution of (2.2) with

3g  . For a fixed h , (2.5) determines a set of 

invariant curves of system (2.4). As h is varied, 
(2.5) determines different families of orbits of 
system (2.4) having different dynamical 

behaviors. Let  ,e eM y  be the coefficient 

matrix of the linearized system of (2.4) at the 

equilibrium point  ,e ey , then 

 

 
 

 
2 2

2 2
,

3 6 3 4

e e

e e

e

y
M y

c y

 


  

  
       

                  

(2.6) 
 
and at this equilibrium point, we have 

     
�(��, ��) = det � (��, ��) =  −8��

� − 2(�� +
�)[3�� + 6�� + (3�� − �)]    (2.7)   

 
 

    , , 2e e e e ep y trace M y y     (2.8) 

 
By the theory of planar dynamical system (cf. 
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[15,16]), for an equilibrium point of a planar 

dynamical system, if 0J  , then this equilibrium 
point is a saddle point; it is a center point if 

0J   and 0p  ; I 0J  and the Poincar´e 

index of the equilibrium point is 0 , then it is a 
cusp. Then we obtain the bifurcation curves as 
follows: 
 

     2 2 2 23 9 9
, 13 105 0 , , 0 ,

4 32 5
c c c c           

 

   2 29
3 , 13 105 0 , 0,

32
c c         

 

Which divide the  ,c -parameter plane into 22 

subregions: 
 
 
 
 

 

   2 2
1 2

3 3
, : 0, , , : 0, ,

4 4
B c c B c c     

  
        

    
 

       2 2 2
3 4

3 9 9
, : 0, 13 105 , , : 0, 13 105 ,

4 32 32
B c c B c c      

  
           

    
 

      2 2 2
5 6

9
, : 0, 13 105 , , : 0, ,

32
B c c B c c      

 
        

  
 

     2 2 2
7 8, : 0, 3 , , : 0, 3 ,B c c B c c            

 
 

    2 2
9 10

3
, : 0, 3 , , : 0, ,

4
B c c B c c     

 
      

  

 

   2 2 2
11 12

3 3
, : 0, , , , : 0, ,

4 4
B c c B c c      

  
         

    
 

    2 2 2
13 14

9
, : 0, , , , : 0, ,

5
B c c B c c      

 
       

  
 

   2 2 2
15 16

9 9
, : 0, , , , : 0, 3 ,

5 5
B c c B c c      

  
         

    
 

      2 2 2
17 18

9
, : 0, 3 , , , : 0, 3 13 105 ,

32
B c c B c c      

 
        

  
 

       2 2
19 20

9 9
, : 0, 13 105 , , , : 0, 13 105 ,

32 32
B c c B c c     

  
          

    
 

     21 22, : 0, 0, , , : 0, 0 .B c c B c c        
 

 
We present the bifurcation sets and phase portraits of system (2.3) in Fig. 1. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

 
(g) 

 
(h) 

 
(i) 

 
(j) 

 
(k) 

 
(l) 

 
(m) 

 
(n) 

 
(o) 
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(p) 

 
(q) 

 
(r) 

 
(s) 

 
(t) 

 
(u) 

 
(v) 

 

Fig. 1. The bifurcation sets and phase portraits of system (2.3). (a)   1,c B  . (b)   2,c B  . 

(c)   3,c B  . (d)   4,c B  .  (e)   5,c B  . (f)   6,c B  . (g)   7,c B  .  (h)   8,c B  . 

(i)   9,c B  . (j)   10,c B  . (k)   11,c B  . (l)   12,c B  . (m)   13,c B  . (n)   14,c B  . 

(0)   15,c B  . (p)   16,c B  . (q)   17,c B  . (r)   18,c B  . (s)   19,c B  . (t) 

  20,c B  .  (u)   21,c B  . (v)   22,c B   

 
3. SOLITARY WAVE SOLUTION 
 
Using the theory of planar dynamical system (cf. 
[15,16]) and the Hartman-Grobman Theorem [17], 
we obtain the following existence result and 
basic properties for solitary wave solutions of 
(1.3): 
 

Proposition 3.1. If   3,c B  falls into the 

parametric subregions: 3 7 9 12 16 18, , , , , ,B B B B B B , 

then Eq.(1.3) has solitary wave solutions of 

depression, which are obtained from the 
homoclinic connection based at the saddle point 
of (2.3). These solutions are symmetric with 
respect to the trough. The solitary waves tend 
exponentially to a constant on either side of the 
trough. 
 

When   3,c B  (that is, ,c satisfy 0  ,

 2 23 9
13 105

4 32
c    ), (2.3) has a 

homoclinic orbit, which can be expressed as: 
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    �� �
�

�
 �� +  ��� +

�

�
(6�� − �)� +

�

�
(3�� − �)� −

(� + �)� �� = �(��, 0),       (3.1) 
 

Where  1,0  is a saddle point of (2.3) and 

2

1

3 4 3

2

c 


  
 . Regarding y in (3.1) as 

a function of , yields an explicit expression of 

the homoclinic connection in the phase plane. 
Generally, substituting this expression into the 
first equation in (2.3) and integrating along the 
homoclinic orbit, we can obtain the expression of 
the solitary wave solution. However, since the 
explicit expression of the homoclinic orbit is 
much complicated, we cannot obtain the 
expression of the solitary wave solution explicitly. 
 

Now we take a set of data and employ 
mathematical software Maple to numerically 
simulate the solitary wave solution. Taking

2.0, 3.05c    , then the homoclinic orbit 

leaves the critical saddle point 

   1,0 3.223606798,0  and crosses the 

horizontal axis once at  2.468173816,0 , 

before returning to the saddle point symmetrically 
with respect to the horizontal axis. Thus we take 

the initial conditions  0 2.468173816   and 

 ' 0 0   and use Maple to simulate the 

integral curve of Eq. (2.2) as in Fig. 2. We can 
see that our theoretic analysis agrees with the 
numerical simulation. 
 

When  ,c falls into the parametric subregions: 

7 9 12 16, , ,B B B B  and 18B , respectively, we can 

analyze in the same manner. We omit the details 
for simplicity. 
 

4. COMPACTON SOLUTION 
 

Due to the fact that the planar system (2.3) is 
discontinuous along the straight line   (for 

a detailed account on various evolution 
equations arising in the context of nonlinear 
water waves which yield so-called singular 
nonlinear traveling wave systems we refer to 
[18]), (1.3) has the compactly supported solitary 
waves. The orbit connecting the equilibrium point 
and tangent to the invariant    , 

corresponds to the compactly supported solitary 
wave (compacton) and has finite existence time, 
cf. Fig. 1(f), (m),(u). 

 
 

Fig. 2. Simulation of the solitary wave 

solution of (1.3) with 2.0   , 3.05c  , 

 0 2.468173816  and  ' 0 0   

  

When   6,c B   (that is, satisfy 0 , 

2c ), (2.3) has a closed orbit connecting the 

equilibrium point  ,0 , which can be 

expressed as:  
 

  2 2
2

1
3 6 2 , ,

15
y                  

(4.1) 

where 2

15
1

3
 

 
    
 

. Substituting (4.1) 

into the first equation in (2.3) and integrating 
along the orbit, we obtain the expression of the 
compacton solution 
 

    2 215 , ,F F            

(4.2) 
Where 

           

 

1 1
4 42 15 3

, ,
5

F EllipticF I
 




  
        

 

              

(4.3) 
 

2 1I   and Elliptic F is the incomplete elliptic 
integral of the first kind. The orbit has finite 
existence time, which is given by 
 

       215T F F    .      (4.4)  

        
We may extend this solution to the real line by 

setting       for  ,R T T   . This is 

possible since     is a constant solution of 
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(2.2). A typical of such solution is shown in Fig. 3. 
 

 
 

Fig. 3. Compacton solution with 

2.0, 4.0c     

 

Taking 2.0, 4.0c    , then the orbit leaves 

the equilibrium point    ,0 4.0,0   and 

crosses the horizontal axis once at

   2 ,0 0.5819888975,0    before returning 

to the equilibrium point symmetrically with 
respect to the horizontal axis. The time it takes 

the orbit to get from  0.5819888975,0 to the 

equilibrium point    ,0 4.0,0   is given by

3.648771985T  . Thus we take the initial 

conditions  0 0.5819888975    and 

 ' 0 0   and use Maple to simulate the 

integral curve of Eq. (2.2) as in Fig. 4. Comparing 
Fig. 4 with Fig. 3, we can also see that our 
theoretic result agrees with the numerical 
simulation. 
 

 
 
Fig.  4. Simulation of the compacton solution 

with 2.0, 4.0c    , 

 

 0 0 .5819888975    and  ' 0 0   

When  ,c  falls into the parametric subregions: 

13B and 21B , respectively, one can obtained the 

similar results. We omit the detailed results for 
brevity. 

5. PEAKON SOLUTION 
 

From Fig.1 (d), (o) and (s), one can see that the 
two heteroclinic orbits connecting with saddle 
point and the two saddle points on singular line 
   , together with the finite line between 

these two saddle points corespond to the peakon 
solution. 
 

When   15, c B   (that is, satisfy 0 , 

2

5

9
c ), there are two heteroclinic orbits 

connecting with saddle point  0,0  and the two 

saddle points 32
,
5

 
 
  

 

 and  

32
,

5
 

 
   

 

 on singular line   . Their 

expressions are 
 

1
3 , 0

5
y                (5.1)    

               
Substituting (5.1) into the first equation in (2.3) 
and integrating along the orbit, we obtain the 
expression of the peakon solution 

    

2 3 2
arctan arctan , 0

3 315
h h

 
  



    
             

    

(5.2) 
 

By use of    ,u x t     , we can obtain the 

peakon solution of Eq.(1.3). The profile of (5.2) is 
shown in Fig. 5. 

 

 
 

Fig. 5. The peakon solution with 2.0   and

7.2c   
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When  ,c  falls into the parametric sub regions: 

4B and 19B , respectively, the results are similar 

and we omit them here. 

 

6. CONCLUSION 

    

In this paper, with the aim of bifurcation method 
of planar systems and simulation method of 
differential equations are employed to investigate 
the compacton, peakon and solitary wave 

solutions of the osmosis  3,2K  equation. The 

existence and properties of solitary wave solution, 
and expression of compacton in certain 
parametric region are obtained and numerical 
simulations of these solutions are made. Our 
results show that the theoretical analysis agrees 
with the simulations. The expression of exact 
peakon in certain parametric region is also 
derived. To the best of our knowledge, the 
obtained solutions are new for the osmosis 

 3,2K  equation. 

 

ACKNOWLEDGEMENTS 

 

The authors would like to thank all the 
anonymous referees for their careful reading of 
the paper and constructive comments, which 
have helped to improve the representation of the 
paper.  This work was supported by the Natural 
Science Foundation of China (No. 11171135, 
10420130638). 

 

COMPETING INTERESTS 

 

Authors have declared that no competing 
interests exist. 

 

REFERENCES 

 

1. Rosenau P, Hyman JM. Compactons: 
solitons with finite wavelengths. Phys. Rev. 
Lett. 1993;70:564-567. 

2. Ismail MS, Taha T. A numerical study of 
compactons. Math. Comput. Simulation. 
1998;47:519-530. 

3. Ismail MS. A finite difference method of 
Kortweg-de vries like equation with 
nonlinear dispersion. Int. J. Comput. Math. 
2000;4:185-193. 

4. Wazwaz AM. Compactons and solitary 
patterns structures for variants of the KdV 
and the KP equations. Appl. Math. Comput. 
2003;138:309-319.  

5. He JH. Homotopy perturbation method for 
bifurcation of nonlinear problems. Int. J. 
Nonlinear Sci. Numer. Simulat.                     
2005;6:207-208. 

6. He JH, Wu XH. Exp-function method for 
nonlinear wave equations. Chaos, Solitons 
& Fractals. 2006;30:700-708. 

7. Xu L. Variational approach to solitons of 
nonlinear dispersive equations. Chaos, 
Solitons & Fractals. 2008;37:137-143.  

8. He B, Meng Q. New exact explicit peakon 
and smooth periodic wave solutions of the 

 3, 2K  equation. Appl. Math. Comput, 

2010;217:1697-1703. 

9. Ebadi G, Biswas A. The '/G G  method 
and topological soliton solution of the 

 ,K m n equation. Commun. Nonlinear 

Sci. Numer. Simulat. 2011;16: 2377-2382. 

10. Zhu Y, LÜ Z. New exact solitary-wave 
special solutions for the nonlinear dispersiv

 ,K m n equations. Chaos, Solitons & 

Fractals. 2006;27:836-842.  

11. Xu CH, Tian LX. The bifurcation and 

peakon for  2,2K  equation with 

osmosis dispersion. Chaos, Solitons & 
Fractals. 2009;40:893-901. 

12. Zhou JB, Tian LX. Soliton solution of the 

osmosis  2,2K  equation. Phys. Lett. A. 

2008;372: 6232-6234.  

13. Zhou JB, Tian LX, Fan XH. New exact 

travelling wave solutions for the  2, 2K

equation with osmosis dispersion. Appl. 
Math. Comput. 2010;217:1355-1366.  

14. Li SY, Liu ZR. The traveling wave solutions 
and their bifurcations for the BBM-like 

 ,B m n  equations. J. Appl. Math.                 

2013;17. Article ID 490341, Accessed 11 
December 2014. 

Available: http://dx.doi.org/10.1155/2013/4
90341. 

15. Luo D. et al. Bifurcation theory and 
methods of dynamical systems. London: 
World Scientific Publishing Co.; 1997. 

16. Perko L. Differential equations and 



 
 
 
 

Chen et al.; JSRR, 5(4): 275-284, 2015; Article no.JSRR.2015.095 
 
 

 
284 

 

dynamical systems. New York: Springer; 
2006.  

17. Teschl G. Ordinary differential equations 
and dynamical systems, in: Graduate 
studies in mathematics. AMS: Providence; 

2012. 

18. Li JB. Singular nonlinear travelling wave 
equations: Bifurcations and exact solution. 
Beijing: Science Press; 2013. 

_______________________________________________________________________________ 
© 2015 Chen et al.; This is an Open Access article distributed under the terms of the Creative Commons Attribution License 
(http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, 
provided the original work is properly cited. 
 
 

Peer-review history: 
The peer review history for this paper can be accessed here: 

http://www.sciencedomain.org/review-history.php?iid=750&id=22&aid=7520 
 


