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Abstract 
 

We obtain a necessary and sufficient condition for L1-convergence of a modified cosine sum and a 
theorem of Telyakovskii [1] concerning convergence behavior of cosine series with monotonic decreasing 
coefficients has been deduced as a corollary. 
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1 Introduction 
 
Consider the cosine series  
 

∑
∞

=
+

1k
k

0 kxcosa
2

a
 .                                                                                                                   (1.1)    

 

Let Sn(x) denote the partial sum of (1.1) and let f(x) = limn→∞ Sn(x).  
 

The problem of L1 − convergence, via Fourier coefficients, consists of finding the properties of Fourier 

coefficients such that the necessary and sufficient condition for || Sn(x) − f(x) || = o(1), n→∞, is given in 

the form  an log n = o(1),  n→∞ , where || . || denotes the L1-norm.  

Original Research Article 



 
 
 

Hooda; BJMCS, 13(1): 1-7, 2016; Article no.BJMCS.21641 
 
 
 

2 
 
 

The following definitions are related to this paper. 
 

Convex sequence. [2,vol.II,p.202] A sequence {ak} is said to be convex if ∆2ak ≥ 0  for every k where        

∆2ak =   ∆ ak − ∆ ak+1  and ∆ ak = ak − ak+1.  

Quasi- Convex sequence [2,vol.II,p.202]. A sequence {ak} is said to be quasi-convex if  ∑
∞

=1k
k

 
| ∆2ak | < ∞. 

  

The class of all such sequences is an extension of the class of convex null sequences.  The class of quasi-

convex sequences is a subclass of BV class (∑
∞

=1k
| ∆ak | < ∞), the class of all null sequences of bounded 

variation. 
 
Teljakovskii [3] generalized the notion of quasi- convexity. 
 
Let {ak} be a sequence satisfying  
 

ak → 0  as k→∞ ;                                                                                                                           (1.2) 
 

S1 =   ∑
∞

=0k
|∆ak|  <  ∞ ;                                                                                                              (1.3) 

 

S2 =   ∑
∞

=2m
∑

∆−∆
=

+−
]2/M[

1k

kMkM

k
aa

<  ∞ .                                                                            (1.4)   

 
It has been established [3] that a quasi-convex null sequence satisfies the conditions (1.2) − (1.4) and imply 
limn→∞ Sn(x) exists where Sn(x) is the partial sum of (1.1).  
 
Concerning L1-convergence of the cosine series (1.1), the following theorem is known:  
 
Theorem A [2]. If ak ↓0 and {ak} is convex or even quasi-convex, then for the convergence of the series (1.1) 
in the metric space L1, it is necessary and sufficient that an log n = o(1), n→∞ . 
 
Teljakovskii [4] generalized Theorem A for the cosine series (1.1) with coefficients {ak} satisfying 
conditions (1.2) − (1.4) and established the following Theorem:  
 
Theorem B [4]. Let the coefficients {ak} of the series (1.1) satisfy the conditions (1.2) − (1.4).                            
If    limn→∞ an log n = 0, then the cosine series (1.1) converges in the L1-metric space.  
 
Teljakovskii [3] has also shown that under the conditions (1.2) − (1.4), the series (1.1) is a Fourier series and  
 

∫
π

0
∑+
∞

=1k
k

0 kxcosa
2
a dx ≤ C(S1+S2) 

 
where C is a positive constant.  
   
Sidon generalized the concept of quasi-convexity as follows:  
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The class S [5]. A null sequence {ak} belongs to the class S if there exists a sequence {Ak} such that            

(i)  Ak ↓ 0 ,  k → ∞ , (ii) ∑
∞

=0k
kA  < ∞ , and  (iii) | ∆ak | ≤  Ak  for all k .  

 
The class S is the extension of the class of quasi-convex sequences.   Since a quasi-convex null sequence 

satisfies conditions of the class S, if we choose An =  ∑
∞

=nm
|
 
∆2am |. 

 
Teljakovskii generalized Theorem A by establishing the following theorem:  
 

Theorem C [1].  Let {ak} belong to the class S.  Then the cosine series (1.1) is the Fourier series of its 

sum f and || Sn(x) − f(x) || = o(1), n→∞  if and only if  an log n  =  o(1),   n→∞ . 
 
Teljakovskii, thus showed that the class S is also a class of L1-convergence which in turn led to numerous, 
more general results.  
 
Rees and Stanojevic [6,7] introduced a new type of cosine sum  
 

 hn(x =   
2
1
∑
∞

=0k
∆ ka  +  ∑

=

n

1k
∑
=

n

kj
∆ ja cos kx                                                                       (1.5) 

 
and obtained a necessary and sufficient for its integrability.  
 
Regarding the L1 - convergence of (1.5) to a cosine trigonometric series belonging to the class S, Ram 
proved the following result:  
 
Theorem D. [8]. If {a k} belongs to the class S, then  
 

|| f(x) − hn(x) || = o(1),   n→∞ .  
 
Kumari and Ram [9] introduced a new modified cosine sum 
 

               ∑∑
==









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n
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j
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k
n kxk

j

aa
xf cos

2
)(

1

0                                                                                    (1.6)                                        

 
and proved the result:  
 
Theorem E.  Let {ak} belong to the class S.  
 

If  limn→∞ | an+1 | log n = 0,  then  || f(x) − fn(x) || = o(1),  n→∞ . 
 
Hooda et al. [10] introduced new modified cosine sum  

ng (x)  =   








2

1




 ∑∆+

=

n

0k
k

2
1 aa + ∑

=

n

1k 





∑∆+
=

+

n

kj
j

2
1n aa cos kx ,

                               (1.7) 

    
and studied the necessary and sufficient conditions for the L1-convergence and integrability of the limit of 
(1.7) under the conditions (1.2) – (1.4). 
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In recent years, significant results have been developed by various authors [11-16] by imposing different 
conditions on the coefficients ak of trigonometric series (1.1). The aim of this paper is to study the                      
L1-convergence of (1.7) under class S on the coefficients ak and deduce Theorem C as a corollary of our 
result.  
 

2 Lemma 
 
The following lemma is required for the proof of our result:  
 

              Lemma  1. [17].  If | ck |  ≤ 1 ,  then  
 

∫
π

0
∑
=

n

0k
kk )x(Dc dx ≤ C (n+1), 

 
where C is a positive constant and Dn(x) = (1/2)  + cos x + … + cos nx represents Dirichlet’s kernel. 
  

3 Results  
 
Theorem  1.  Let {ak} belong to the class S, then  
 

 || f(x) − gn(x) || = o(1),  n→∞  if and only if  an log n  =  o(1), n→∞ .  
 
Corollary  1.  Let {ak} belong to the class S, then 
 

|| Sn(x) − f(x) ||=  o(1),     n→∞  if and only if  an log n  =  o(1), n→∞ . This is nothing but theorem C.  
 
Proof  of  Theorem 1. We have 
 

gn(x)     =   








2

1




 ∑∆+

=

n

0k
k

2
1 aa +∑

=

n
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
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
∑∆+
=

+
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j

2
1n aa cos kx    

= (1/2)[a0 − an+1 + an+2 ] +  ∑
=

n

1k
 [ak − an+1 + an+2] cos kx                                                                           

                                                             

= (a0/2)
 
− (1/2)∆an+1 +   ∑

=

n

1k
 ak cos kx − ∆an+1 ∑

=

n

1k
 cos kx                                                           

                                                                                           

= (a0/2) +  ∑
=

n

1k
 ak cos kx − ∆an+1 ∑

=





 +
n

K

ks
1 2

1
cos    

                                                                                      

=  Sn(x) − ∆an+1 Dn(x) .        
 

Using Abel’s transformation, we get 
                            

 gn(x) = ∑
−

=

1

0

n

k

  ∆akDk(x) +  anDn(x) − ∆an+1 Dn(x)                                                                   (3.1)                   

                              

=   ∑
=

n

k 0

  ∆ak Dk(x) + an+2 Dn(x).                               
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Now,   
 

 f(x) − gn(x) =  ∑
∞

+=

∆
1

)(
nk

kk xDa  − an+2 Dn(x). 

                

Abel transformation with lemma1 yield, 
 

∫ −
π

0

)()( xgxf n dx  

 

≤

 
∫ ∑

∞

+=
∆

π

0 1

)(
nk

kk xDa dx +∫ +

π
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2 )(xDa nn dx 

 

=  ∫ ∑
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0 1

)(
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≤  C ∑
∞

+=
∆+

1

)1(
nk

kAk  + ∫ +

π

0

2 )(xDa nn dx .  

 

Now, ∫ +

π

0

2 )(xDa nn

 

 behaves like an log n and under the assumed hypothesis   an log n = o(1),  n→∞ as 

well as∑
∞

+=
∆+

1

)1(
nk

kAk converges, the right hand side tends to zero as n→∞ and this gives 

 

limn→∞ ∫ −
π

0

)()( xgxf n dx=0.  

 
On the other hand, 
 

 an+2 Dn(x) =  ∑
∞

+=
∆
1

)(
nk

kk xDa  −[ f(x) + gn(x)] , 

 
and so 
 

∫ +

π

0

2 )(xDa nn dx     ≤
 
∫ ∑

∞

+=
∆

π

0 1

)(
nk

kk xDa dx +∫ −
π

0

)()( xgxf n dx . 

 

Using the hypothesis of the theorem along with above estimates, the right hand side tends to zero as n→∞.  



 
 
 

Hooda; BJMCS, 13(1): 1-7, 2016; Article no.BJMCS.21641 
 
 
 

6 
 
 

This completes the proof of our theorem.  
 
Proof  of Corollary 1.  We have  
 

∫
π

0

| f(x) − Sn(x) | dx  = ∫
π

0

| f(x) − gn(x) + gn(x) − Sn(x) | dx  

≤ ∫
π

0

 | f(x) − gn(x) |dx +∫
π

0

| gn(x) − Sn(x) |dx 

≤ ∫
π

0

| f(x) −fn(x) |dx +∫
π

0

| ∆an+1 Dn(x)|dx  

 
whereas 
 

∫
π

0

| ∆an+1 Dn(x)|dx  ≤ ∫
π

0

| f(x) −fn(x) |dx + ∫
π

0

| f(x) − Sn(x) | dx . 

 

Since ∫
π

0

| Dn(x) |dx behave like log n for large values of n and by the hypothesis of our result the corollary 

follows. 
 

4 Conclusion 
 
In this paper, a new approach has been developed to obtain a necessary and sufficient condition for 
L1−convergence of trigonometric series (1.1). Our results can be generalized to obtain more interesting 
results. 
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